
Dyalog
Release Notes

Dyalog is a trademark of Dyalog Limited

Copyright © 1982-2018 by Dyalog Limited

All rights reserved.

Version: 17.0

Revision: 2987 dated 20230217

Please note that unless otherwise stated, all the examples in this document assume that ⎕IO is 1, and ⎕ML is 1.

Nopart of this publicationmay be reproduced in any form by any means without the prior written
permission of Dyalog Limited.

Dyalog Limitedmakes no representations or warranties with respect to the contents hereof and
specifically disclaims any impliedwarranties of merchantability or fitness for any particular purpose.
Dyalog Limited reserves the right to revise this publicationwithout notification.

email: support@dyalog.com
https://www.dyalog.com

TRADEMARKS:

SQAPL is copyright of Insight Systems ApS.

UNIX is a registered trademark of The OpenGroup.

Windows, Windows Vista, Visual Basic andExcel are trademarks of Microsoft Corporation.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

macOS®, Mac OS® andOSX® (operating system software) are trademarks of Apple Inc., registered in
the U.S. and other countries.

Array Editor is copyright of davidliebtag.com.

All other trademarks and copyrights are acknowledged.

iii

Contents

Chapter 1: Introduction 1
Key Features 1
Total Array Ordering 4
Locals Lines 13
Global Triggers 15
128-Bit Decimal Numbers 17
System Requirements 18
Interoperability 19
Announcements 23
Bug Fixes 24

Chapter 2:Miscellaneous 25
Command-Line Options 25
IDE Enhancements 26
Find Objects Tool 27
Other Changes 31

Chapter 3: LanguageReferenceChanges 33
Shy Results for System Functions 34

Grade Down (Monadic) 35
Grade Up (Monadic) 37
Unique 40
Comma Separated Values 41
Make Directory 55
Native File Copy 57
Native File Create 62
Native File Delete 64
Native File Exists 66
Read Text File 67
Native File Information 70
Native File Move 75
File Name Parts 79
Write Text File 81

Chapter 4: I-BeamReferenceChanges 83
Syntax Colour Tokens 84
Temporary Directory 85
Remove Loaded File Object Info 85

iv

Loaded File Object Info 86

Chapter 5:ObjectReferenceChanges 87
CellMove 88

Chapter 6:Non-Windows Specific Features 91
Summary 91

Index 93

Chapter 1: Introduction 1

Chapter 1:

Introduction

Key Features
Dyalog APL Version 17.0 provides the following new features, enhancements and
changes:

Performance Improvements
As part of the ongoing Performance Quality Assurance project1, Version 17.0
includes a considerable amount of research and development work designed to
substantially improve speed of execution2.

The performance of 128-bit Decimal floating-point calculations on all platforms
which do not have hardware support for such numbers has been significantly
improved by changing the internal format for such numbers. See 128-Bit Decimal
Numbers on page 17.

l Editing scripts is significantly faster. The improvement is especially
noticeable on large scripts.

l ⎕NINFO is faster when the Wildcard option is enabled and the name does
not contain any wildcard characters.

New Idioms
The following new idioms provide the fastest way to sort arrays of any rank:

Expression Description

{(⊂⍋⍵)⌷⍵}XA XA sorted into ascending order

{(⊂⍒⍵)⌷⍵}XA XA sorted into descending order

1https://www.dyalog.com/blog/2016/03/pqa/
2https://www.dyalog.com/dyalog/dyalog-versions/170/performance.htm

https://www.dyalog.com/blog/2016/03/pqa/
https://www.dyalog.com/dyalog/dyalog-versions/170/performance.htm

Chapter 1: Introduction 2

Language Enhancements
New Language Features

l Monadic Grade Up (⍋), Grade Down (⍒) and Interval Index (⍸) have been
extended to apply to all arrays. See Total Array Ordering on page 4.

l New system function ⎕NCOPY. See Native File Copy on page 57.
l New system function ⎕NMOVE. See Native File Move on page 75.
l The localisation of names in the header of a defined function and operator
has been augmented by Locals Lines which may appear between line [0]
and the first executable statement. See Locals Lines on page 13.

Enhancements
A number of the native file functions have been extended to handle multiple files.
Instead of accepting just a single file name, they now accept zero, one, or multiple
file names. Where appropriate these functions also accept wildcards in names.

l The Unique primitive function (monadic ∪) has been extended to work with
all arrays, not just vectors. See Unique on page 40.

l ⎕CSV provides a new column type (numeric/empty) and 3 new variant
options to handle metacharacters. The Overwrite variant option is replaced
by IfExists. See Comma Separated Values on page 41.

l ⎕MKDIR accepts multiple file names. See Make Directory on page 55.
l ⎕NDELETE accepts multiple file names, wildcards, and has an option to
delete non-empty directories. See Native File Delete on page 64.

l ⎕NEXISTS accepts multiple file names and wildcards. See Native File
Exists on page 66.

l ⎕NINFO accepts multiple file names, reports additional properties and has a
Recurse variant option. See Native File Information on page 70.

l ⎕NPARTS accepts multiple file names. See File Name Parts on page 79.
l ⎕NPUT now supports an option to append data to a file. See Write Text File
on page 81.

l ⎕NCREATE is extended to allow semi-automatic naming of files and to
allow existing files to be overwritten. See Native File Create on page 62.

l System functions ⎕CSV, ⎕NGET, ⎕NPUT, ⎕R, ⎕S which accept an encoding
name (e.g. 'Windows-1252') have been extended to support any user-
definable 1-byte character set. See Comma Separated Values on page 41,
Read Text File on page 67, and Write Text File on page 81.

l To facilitate the use of all system functions in dfns, those that previously
did not return a result now return a shy result. See Shy Results for System
Functions on page 34.

Chapter 1: Introduction 3

l Global Triggers have been enhanced to identify indexed assignment. See
Global Triggers on page 15.

New I-beam Features
l A new I-beam function provides the list of syntax colour tokens. See Syntax
Colour Tokens on page 84

l A new I-beam function obtains the name of a system temporary directory.
See Temporary Directory on page 85.

l Two new I-beam functions have been provided to better manage the
information pertaining to objects associated with files. See Loaded File
Object Info on page 86 and Remove Loaded File Object Info on page 85.
The information reported has been supplemented by the file checksum and
modification date.

New Command-Line Options
l New -apl and -cef options are provided to control how Command-Line
parameters are processed. See Command-Line Options on page 25.

IDE Enhancements
l The Find Objects Tool provides a simpler, cleaner user-interface and is no
longer a tabbed dialog. See Find Objects Tool on page 27.

l The Backtick keyboard provided by the RIDE may now be used natively.
See Backtick Keyboard on page 26.

GUI Enhancements
l The CellMove event message contains 2 new elements to resolve a
validation anomaly that occurred when CellMove and CellChange events
activated callbacks on the same Grid. See CellMove on page 88.

Chapter 1: Introduction 4

Total Array Ordering
Total Array Ordering (TAO) extends the sort functions Grade Up (⍋), Grade Down
(⍒) and Interval Index (⍸) to handle all APL arrays, not just simple numeric and
character arrays. In practice, TAO extends to complex numbers, nested arrays and
⎕NULL but not to namespaces. For an introduction to the concept of total order in
mathematics see https://en.wikipedia.org/wiki/Total_order.

In order to implement TAO, according to which any APL array must be comparable
to any other APL array, it has been necessary to extend the set of rules that govern
these comparisons. The new set of rules is as follows.

Rules for comparing simple scalars
l Numeric comparisons are exact, as if ⎕CT←⎕DCT←0 and ⎕FR←1287
l Two real numbers are compared numerically, thus 1.2 precedes 3.
l In the Unicode Edition two characters are compared numerically according
to their position in the Unicode table. Thus 'a' (⎕UCS 97) precedes
'b' (⎕UCS 98). In the Classic Edition characters are compared according
to their index in ⎕AV.

l Complex numbers are ordered by first comparing their real parts. If these are
equal, the order is determined by comparing their imaginary parts.
Thus 1J¯2 precedes 1 which precedes 1J2.

l ⎕NULL (which represents a null item obtained from an external source)
precedes all numbers, and all numbers precede all characters.
Thus ⎕NULL precedes 100, and 100 precedes 'A'.

Rules for comparing non-scalar arrays
l Arrays are compared item by item in ravel order.
l For arrays of equal shape, the order is determined by the first pair of items
which differ, thus (1949 4 29) precedes (1949 4 30). Similarly
('April' 29) precedes ('April' 30).

l Arrays with the same rank but different shape are ordered as if the shorter
array were padded with items that precede all other types of item (negative
infinity) including ⎕NULL. Thus 'car' precedes 'carpet'
and (1949 4) precedes (1949 4 30). An alternative model is to say
that shorter arrays precede longer ones that begin the same way. For
character vectors this is described as lexicographical ordering, which is the
order that words appear in a dictionary.

l Arrays with differing rank are ordered by first extending the shape of the
lower-ranked array with 1s at the beginning, and then comparing the
resultant equal-rank arrays as described above. So, to compare a vector (rank
1) with a matrix (rank 2), the vector is reshaped into a 1-row matrix.

Chapter 1: Introduction 5

l Empty arrays are compared first by type alone, so an empty numeric array
precedes an empty character array, regardless of rank or shape.
Thus ((0 3 2)⍴0) precedes ''. If the empty arrays are of the same type,
they are sorted in order of their shape vector, working right to left.
So ((0 5 2)⍴99) precedes ((0 3 4)⍴0) and
((0 3 4)⍴'') precedes ((1 0 5 4)⍴'').

Nested Array Example (phone book)
In our office, certain people have two phone extensions. We want to sort our phone
book first by name and then by extension number. With TAO, this just falls out.

⍴pb
6 3

pb
┌────────┬─────┬───┐
│Rivers │Jason│554│
├────────┼─────┼───┤
│Daintree│John │532│
├────────┼─────┼───┤
│Rivers │Jason│543│
├────────┼─────┼───┤
│Foad │Jay │558│
├────────┼─────┼───┤
│Scholes │John │547│
├────────┼─────┼───┤
│Scholes │John │535│
└────────┴─────┴───┘

Sort←{(⊂⍋⍵)⌷⍵}

⊢pb←Sort pb
┌────────┬─────┬───┐
│Daintree│John │532│
├────────┼─────┼───┤
│Foad │Jay │558│
├────────┼─────┼───┤
│Rivers │Jason│543│
├────────┼─────┼───┤
│Rivers │Jason│554│
├────────┼─────┼───┤
│Scholes │John │535│
├────────┼─────┼───┤
│Scholes │John │547│
└────────┴─────┴───┘

Chapter 1: Introduction 6

Interval Index ⍸ is also extended to support TAO, so we can use it to find the
position for a new member of staff:

new←'Kromberg' 'Morten' 584
pb ⍸ new

2

Then we can insert the new row into the appropriate position using ↑ and ↓:

(2↑pb)⍪new⍪(2↓pb)
┌────────┬──────┬───┐
│Daintree│John │532│
├────────┼──────┼───┤
│Foad │Jay │558│
├────────┼──────┼───┤
│Kromberg│Morten│584│
├────────┼──────┼───┤
│Rivers │Jason │543│
├────────┼──────┼───┤
│Rivers │Jason │554│
├────────┼──────┼───┤
│Scholes │John │535│
├────────┼──────┼───┤
│Scholes │John │547│
└────────┴──────┴───┘

... although a somewhat neater solution is to use a function train:

Into←{(⍵⍸⍺)(↑⍪⍺⍪↓)⍵}
new Into pb

┌────────┬──────┬───┐
│Daintree│John │532│
├────────┼──────┼───┤
│Foad │Jay │558│
├────────┼──────┼───┤
│Kromberg│Morten│584│
├────────┼──────┼───┤
│Rivers │Jason │543│
├────────┼──────┼───┤
│Rivers │Jason │554│
├────────┼──────┼───┤
│Scholes │John │535│
├────────┼──────┼───┤
│Scholes │John │547│
└────────┴──────┴───┘

Chapter 1: Introduction 7

Spreadsheet Example

A common requirement is to sort a table by a particular column, or by first one
column and then another, and so forth ...

Here is a Dyalog matrix resulting from importing the Excel spreadsheet shown above
using the Clipboard object. Note that the first column is an array of dates in ⎕TS
format.

⊢ss←(⎕NEW⊂'Clipboard').Array
┌─────────────────┬───────────────┬───────┬───────┐
│Date │Description │Charges│Credits│
├─────────────────┼───────────────┼───────┼───────┤
│2018 3 22 0 0 0 0│City Power │125 │[Null] │
├─────────────────┼───────────────┼───────┼───────┤
│2018 3 9 0 0 0 0 │Phone Company │500 │[Null] │
├─────────────────┼───────────────┼───────┼───────┤
│2018 3 9 0 0 0 0 │Woodgrove Bank │[Null] │250 │
├─────────────────┼───────────────┼───────┼───────┤
│2018 3 9 0 0 0 0 │Blueberry Farm │560 │[Null] │
├─────────────────┼───────────────┼───────┼───────┤
│2018 3 22 0 0 0 0│Wet Water Works│TBD │[Null] │
├─────────────────┼───────────────┼───────┼───────┤
│[Null] │[Null] │[Null] │[Null] │
└─────────────────┴───────────────┴───────┴───────┘

Chapter 1: Introduction 8

When we sort the array, ⍋ will begin by comparing the items, one by one, in the first
column.

According to the TAO rule, ⎕NULL precedes all the numbers 2018, so the last row in
the table sorts first. Similarly, the numbers 2018 all precede the 'D' in Date, so the
first row sorts last.

Then amongst the 7-element numeric vectors, (2018 3 9 0 0 0 0) precedes
(2018 3 22 0 0 0 0) because 9 precedes 22. Finally, those rows with the same
date are ordered by the next item which is the character vector in column 2.

Sort ss
┌─────────────────┬───────────────┬───────┬───────┐
│[Null] │[Null] │[Null] │[Null] │
├─────────────────┼───────────────┼───────┼───────┤
│2018 3 9 0 0 0 0 │Blueberry Farm │560 │[Null] │
├─────────────────┼───────────────┼───────┼───────┤
│2018 3 9 0 0 0 0 │Phone Company │500 │[Null] │
├─────────────────┼───────────────┼───────┼───────┤
│2018 3 9 0 0 0 0 │Woodgrove Bank │[Null] │250 │
├─────────────────┼───────────────┼───────┼───────┤
│2018 3 22 0 0 0 0│City Power │125 │[Null] │
├─────────────────┼───────────────┼───────┼───────┤
│2018 3 22 0 0 0 0│Wet Water Works│TBD │[Null] │
├─────────────────┼───────────────┼───────┼───────┤
│Date │Description │Charges│Credits│
└─────────────────┴───────────────┴───────┴───────┘

We can sort by Charges within Date by ordering the first and third columns:

ss[⍋ss[;1 3];]
┌─────────────────┬───────────────┬───────┬───────┐
│[Null] │[Null] │[Null] │[Null] │
├─────────────────┼───────────────┼───────┼───────┤
│2018 3 9 0 0 0 0 │Woodgrove Bank │[Null] │250 │
├─────────────────┼───────────────┼───────┼───────┤
│2018 3 9 0 0 0 0 │Phone Company │500 │[Null] │
├─────────────────┼───────────────┼───────┼───────┤
│2018 3 9 0 0 0 0 │Blueberry Farm │560 │[Null] │
├─────────────────┼───────────────┼───────┼───────┤
│2018 3 22 0 0 0 0│City Power │125 │[Null] │
├─────────────────┼───────────────┼───────┼───────┤
│2018 3 22 0 0 0 0│Wet Water Works│TBD │[Null] │
├─────────────────┼───────────────┼───────┼───────┤
│Date │Description │Charges│Credits│
└─────────────────┴───────────────┴───────┴───────┘

Chapter 1: Introduction 9

Natural Sort Example
Windows Explorer sorts file names in Natural Order as illustrated below.Where file
names contain numbers, the numeric parts are ordered in numerical order, so for
example, my2 precedes my10 because 2 precedes 10.

Chapter 1: Introduction 10

names
┌────┬─────┬──┬───┬───┬───┬───┬────┬────┐
│myx2│my10b│my│100│my0│my2│my1│my1a│my10│
└────┴─────┴──┴───┴───┴───┴───┴────┴────┘

names is a vector of character vectors containing the file names shown above. If we
sort names using ⍋ we will get a lexicographical ordering:

Sort names
┌───┬──┬───┬───┬────┬─────┬────┬───┬────┐
│100│my│my0│my1│my10│my10b│my1a│my2│myx2│
└───┴──┴───┴───┴────┴─────┴────┴───┴────┘

Note that in alphabetic order, my10 precedes my2 because the character '1'
precedes the character '2'. In order to sort the array into Natural Orderwe need to
split each name into its character and numeric parts. First we need to identify the
numeric digits:

Digits ← {⍵∊⎕D}
Digits ¨names

┌───────┬─────────┬───┬─────┬─────┬─────┬─────┬───────┬───────┐
│0 0 0 1│0 0 1 1 0│0 0│1 1 1│0 0 1│0 0 1│0 0 1│0 0 1 0│0 0 1 1│
└───────┴─────────┴───┴─────┴─────┴─────┴─────┴───────┴───────┘

Next, we create a partition vector to identify the start positions of each of the parts:

CutOffs ← {1,2≠/Digits ⍵}
CutOffs¨names

┌───────┬─────────┬───┬─────┬─────┬─────┬─────┬───────┬───────┐
│1 0 0 1│1 0 1 0 1│1 0│1 0 0│1 0 1│1 0 1│1 0 1│1 0 1 1│1 0 1 0│
└───────┴─────────┴───┴─────┴─────┴─────┴─────┴───────┴───────┘

and use this to partition each of the strings into its character and numeric parts.

Parts ← {(CutOffs ⍵)⊂⍵}
Parts¨¯1↓names ⍝ Drop last element to fit page

┌───────┬─────────┬────┬─────┬──────┬──────┬──────┬────────┐
│┌───┬─┐│┌──┬──┬─┐│┌──┐│┌───┐│┌──┬─┐│┌──┬─┐│┌──┬─┐│┌──┬─┬─┐│
││myx│2│││my│10│b│││my│││100│││my│0│││my│2│││my│1│││my│1│a││
│└───┴─┘│└──┴──┴─┘│└──┘│└───┘│└──┴─┘│└──┴─┘│└──┴─┘│└──┴─┴─┘│
└───────┴─────────┴────┴─────┴──────┴──────┴──────┴────────┘

Chapter 1: Introduction 11

Then we must convert the numeric strings into numbers. Here it is safe to use ⍎.

ExecNums ← {∧/Digits ⍵:⍎⍵ ⋄ ⍵}

⍪ExecNums¨∘Parts¨ names
┌→────────┐
↓┌→──┬─┐ │
││myx│2│ │
│└──→┴─┘ │
├────────→┤
│┌→─┬──┬─┐│
││my│10│b││
│└─→┴~─┴→┘│
├────────→┤
│┌→─┐ │
││my│ │
│└─→┘ │
├────────→┤
│100 │
├~───────→┤
│┌→─┬─┐ │
││my│0│ │
│└─→┴─┘ │
├────────→┤
│┌→─┬─┐ │
││my│2│ │
│└─→┴─┘ │
├────────→┤
│┌→─┬─┐ │
││my│1│ │
│└─→┴─┘ │
├────────→┤
│┌→─┬─┬─┐ │
││my│1│a│ │
│└─→┴─┴→┘ │
├────────→┤
│┌→─┬──┐ │
││my│10│ │
│└─→┴~─┘ │
└────────→┘

Chapter 1: Introduction 12

Then we can define the function Order using ⍋.

Order ← {⍋ExecNums¨∘Parts¨⍵}

and finally the function NatSort to order the array.

NatSort ← {(⊂Order ⍵)⌷⍵}
NatSort names

┌───┬──┬───┬───┬────┬───┬────┬─────┬────┐
│100│my│my0│my1│my1a│my2│my10│my10b│myx2│
└───┴──┴───┴───┴────┴───┴────┴─────┴────┘

⍪NatSort names
┌─────┐
│100 │
├─────┤
│my │
├─────┤
│my0 │
├─────┤
│my1 │
├─────┤
│my1a │
├─────┤
│my2 │
├─────┤
│my10 │
├─────┤
│my10b│
├─────┤
│myx2 │
└─────┘

Chapter 1: Introduction 13

Locals Lines
Locals Lines are lines in a defined function or operator that serve only to define local
names.

A Locals Line may appear anywhere between line [0] and the first executable
statement in the function or operator. Locals lines may be interspersed with blank
lines and comments. A Locals Line is identified by starting with a semicolon,
prefixed optionally by whitespace. It may contain a comment at the end.

A Locals Line must be of the form ;name;name;name where name is any valid
APL name or localisable system variable. The names are localised on entry to the
function exactly as if they were specified as locals on line [0].

Example
∇ r←foo y;a;b ⍝ some locals

;c;d ⍝ some more locals
(a b c d)←y
r←a+b-c×d

∇

The function foo shown above localises names a, b, c and d (the indentation on
line [1] in this example is entirely optional)

Syntactical errors on Locals Lines are detected when the user attempts to fix the
function using the Editor or ⎕FX and will causes the operation to fail.

The local names defined in Locals Lines are syntax-coloured as locals.

You may skip Locals Lines when Tracing by checking the option labelled Skip
Locals Lines when Tracing on the Trace/Edit tab of the Options/Configure Dialog,

Chapter 1: Introduction 14

Chapter 1: Introduction 15

Global Triggers
A global Trigger is a function that triggers on any assignment to a global variable in
the same namespace.

This is implemented by the function declaration statement:

:Implements Trigger *

The argument to the trigger function is an instance of the internal class
TriggerArguments which contains the following members:

Member Description

Name
The name of the global variable that is about to be
changed.

Indexers

If the assignment is some form of indexed assignment,
Indexers is an array with the same shape as the sub-
array that was assigned and contains the ravel-order,
⎕IO-sensitive, indices of the changed elements.
Otherwise, Indexers is undefined.

Example:
∇ foo args

[1] :Implements Trigger *
[2] args.Name'has changed'
[3] :If 2=args.⎕NC'Indexers'
[4] '⍴Indexers'(⍴args.Indexers)
[5] 'Indexers'(,args.Indexers)
[6] :EndIf

∇

vec←⍳5
vec has changed

a b←10 'Pete'
a has changed
b has changed

vec[2 4]←99
vec has changed
⍴Indexers 2
Indexers 2 4

Chapter 1: Introduction 16

array←2 3 4⍴⍳12
array has changed

(2 1 3↑array)←42
array has changed
⍴Indexers 2 1 3
Indexers 1 2 3 13 14 15

Notes:

l like other Triggers, only the most recently fixed global trigger function will
apply and be called on assignment to a global variable.

l global triggers do not apply to local names nor to semi-globals (names
which are localised further up the stack).

l an assignment to a global variable will fire both its specific trigger (if
defined) and the global trigger. However, the order of execution is
undefined.

l do not use an argument name for your trigger function that may conflict
with a global variable name in the namespace.

Further Example
A potential use for a global trigger is to detect the unintended creation of global
variables due to localisation omissions. Note however that the timing of the
activation of the Trigger is unpredictable. In this example, the trigger for the
assignment to b activates after function hoo has exited. When Threads are involved,
timing becomes even less predictable.

∇ CatchGlobals arg
[1] ⍝ Displays a warning when a global is assigned
[2] :Implements Trigger *
[3] '*** assignment to global variable: ',

arg.Name,' from ',1↓⎕SI
∇
∇ foo

[1] goo
∇
∇ goo

[1] hoo
∇
∇ hoo

[1] a←10
[2] b←a

∇
foo

*** assignment to global variable: a from hoo goo foo
*** assignment to global variable: b from goo foo

Chapter 1: Introduction 17

128-Bit Decimal Numbers
On all platforms except IBM's AIX on POWER 128-bit decimal numbers are now
represented using Binary Integer Decimal (BID) encoding format. Previous versions
of Dyalog use Densely Packed Decimal (DPD) format.

This change has been made to speed up 128-bit floating-point calculations under all
non-AIX/POWER platforms when ⎕FR is 1287. AIX/POWER continues to use DPD
since DPD is supported by the hardware; there is no performance degradation on
AIX as a result of the change on all other platforms.

In 17.0 128-bit decimal numbers are automatically converted from BID to
DPD format and vice versa when necessary; workspaces and component files can be
shared between AIX and non-AIX versions of Dyalog APL.

Arrays containing 128-bit decimal values written to component files by 17.0
interpreters on non-AIX platforms cannot be read by earlier interpreters on any
platform; the error DOMAIN ERROR: Array is from a later version of
APL will be signalled. Arrays containing 128-bit decimal values written to
component files by 17.0 interpreters on AIX/POWER can be read by earlier
interpreters on all platforms (subject to other limitations which are detailed in the
interoperability section of these release notes). The same is true of TCPSockets,
Conga communications and arrays that are serialised and unserialised using 219⌶
and 220⌶.

The ⎕NA type code D will continue to mean DECFDPD on AIX/POWER and will
mean BID on all other platforms.

Chapter 1: Introduction 18

System Requirements
Microsoft Windows
Dyalog APL Version 17.0 is supported on versions ofMicrosoft Windows from
Windows 7 up to and including Windows 10 and Windows Server 2016.

Microsoft .NET Interface
Dyalog APL Version 17.0 .NET Interface requires Version 4.0 or greater of the
Microsoft .NET Framework. It does not operate with earlier versions of .NET.

For full Data Binding support (including support for the
INotifyCollectionChanged interface1), and Syncfusion, Version 17.0
requires .NET Version 4.5.

The examples provided in the sub-directory Samples/asp.net require that IIS is
installed. If IIS and ASP.NET are not present, the asp.net sub-directory will not be
installed during the Dyalog installation.

AIX
For AIX, Version 17.0 requires AIX 7.2 or higher, and a POWER7 chip or higher.

Raspberry Pi
On the Raspberry Pi, Dyalog 32-bit Unicode supports Raspbian Jessie or later.

Non-Pi Linux
For non-Pi Linux, Version 17.0 only exists as 64-bit interpreters - there are no 32-bit
versions. It is built on Debian 7, and QAed on RedHat 6; it runs on all recent
distributions, including Ubuntu 14.04 and openSUSE Leap 42.3. Contact Dyalog for
information about other distributions.

macOS/Mac OS X
Version 17.0 requires Mac OSX Yosemite or El Capitan or macOS Sierra or later.
The target Mac must have been introduced in 2010 or later.

1This interface is used by Dyalog to notify a data consumer when the contents of a variable, that is
data bound as a list of items, changes.

Chapter 1: Introduction 19

Interoperability
Introduction
Workspaces and component files are stored on disk in a binary format (illegible to
text editors). This format differs between machine architectures and among versions
of Dyalog. For example, a file component written by a PC may well have an internal
format that is different from one written by a UNIX machine. Similarly, a workspace
saved fromDyalog Version 17.0 will differ internally from one saved by a previous
version of Dyalog APL.

It is convenient for versions of Dyalog APL running on different platforms to be able
to interoperate by sharing workspaces and component files. FromVersion 11.0,
component files and workspaces can generally be shared between Dyalog
interpreters running on different platforms. However, this is not always possible and
the following sections describe limitations in interoperability:

Code and ⎕ORs
Code that is saved in workspaces, or embedded within ⎕ORs stored in component
files, can only be read by the Dyalog version which saved them and later versions of
the interpreter. In the case of workspaces, a load (or copy) into an older version
would fail with the message:

this WS requires a later version of the interpreter.

Every time a ⎕OR object is read by a version later than that which created it, time
may be spent in converting the internal representation into the latest form. Dyalog
recommends that ⎕ORs should not be used as a mechanism for sharing code or objects
between different versions of APL.

Chapter 1: Introduction 20

"Ordinary" Arrays
With the exception of the Unicode restrictions described in the following
paragraphs, Dyalog APL provides interoperability for arrays that only contain
(nested) character and numeric data. Such arrays can be stored in component files - or
transmitted using TCPSocket objects and Conga connections, and shared between
all versions and across all platforms.

Full cross-platform interoperability of component files is only available for large-
span component files.

Null Items (⎕NULL) and Compressed Components
⎕NULLs and components from compressed component files, which were created in
Version 17.0, can be brought into Versions 14.1, 15.0 and 16.0 provided that the
interpreters have been patched to revision 33394 or higher. Attempts to bring
⎕NULLor compressed component into earlier versions of Dyalog APL or lower
revisions of the aforementioned versions will fail with:

DOMAIN ERROR: Array is from a later version of APL.

Object Representations (⎕OR)
An attempt to ⎕FREAD a component containing a ⎕OR that was created by a later
version of Dyalog APL will generate DOMAIN ERROR: Array is from a
later version of APL. This also applies to APL objects passed via Conga or
TCPSockets, or objects that have been serialised using 220⌶ .

32 vs. 64-bit Component Files
It is no longer possible to create or write to small-span (32-bit) files; however it is
still currently possible to read from small span files. Setting the second item of the
right argument of ⎕FCREATE to anything other than 64 will generate a
DOMAIN ERROR.

Note that small-span (32-bit-addressing) component files cannot contain Unicode
data. Unicode editions of Dyalog APL can only write character data which would be
readable by a Classic edition (consisting of elements of ⎕AV).

External Variables
External variables are subject to the same restrictions as small-span component files
regarding Unicode data. External variables are unlikely to be developed further;
Dyalog recommends that applications which use them should switch to using
mapped files or traditional component files. Please contact Dyalog if you need
further advice on this topic.

Chapter 1: Introduction 21

32 vs. 64-bit Interpreters
There is complete interoperability between 32- and 64-bit interpreters, except that
32-bit interpreters are unable to work with arrays or workspaces greater than 2GB in
size.

Note however that underWindows a 32-bit version of Dyalog APL may only access
32-bit DLLs, and a 64-bit version of Dyalog APL may only access 64-bit DLLs. This
is a Windows restriction.

Unicode vs. Classic Editions
Two editions are available on some platforms. Unicode editions work with the entire
Unicode character set. Classic editions (a term which includes versions prior to 12.0)
are limited to the 256 characters defined in the atomic vector, ⎕AV).

Component files have a Unicode property. When this is enabled, all characters will
be written as Unicode data to the file. The Unicode property is always off for small-
span (32-bit addressing) files, as these cannot contain Unicode data. For large-span
(64-bit addressing) component files, the Unicode property is set on by Unicode
Editions and off by Classic Editions, by default. The Unicode property can
subsequently be toggled on and off using ⎕FPROPS.

When a Unicode edition writes to a component file that cannot contain Unicode
data, character data is mapped using ⎕AVU; it can therefore be read without problems
by Classic editions.

A TRANSLATION ERROR will occur if a Unicode edition writes to a non-Unicode
component file (that is either a 32-bit file, or a 64-bit file when the Unicode property
is currently off) if the data being written contains characters that are not in ⎕AVU.

Likewise, a Classic edition will issue a TRANSLATION ERROR if it attempts to read
a component containing Unicode data that is not in ⎕AVU from a component file.

A TRANSLATION ERROR will also be issued when a Classic edition attempts to
)LOAD or)COPY a workspace containing Unicode data that cannot be mapped to
⎕AV using the ⎕AVU in the recipient workspace.

Chapter 1: Introduction 22

TCPSocket objects have an APL property that corresponds to the Unicode property
of a file, if this is set to Classic (the default) the data in the socket will be restricted
to ⎕AV, if Unicode it will contain Unicode character data. As a result,
TRANSLATION ERRORs can occur on transmission or reception in the same way as
when updating or reading a file component.

The symbols ⊆, ⍸, ⍤, ⍠, ⌸ and ⌺ used for the Nest (Interval Index) and Where
(Partition) functions, the Rank, Variant, Key and Stencil operators respectively are
available only in the Unicode edition. In the Classic edition, these symbols are
replaced by ⎕U2286, ⎕U2378, ⎕U2364, ⎕U2360, ⎕U2338 and ⎕U233A
respectively. In both Unicode and Classic editions Variant may be represented by
⎕OPT.

Very large array components
An attempt to read a component greater than 2GB in 32-bit interpreters will result in
a WS FULL.

TCPSockets and Conga
TCPSockets and Conga can be used to communicate between differing versions of
Dyalog APL and are subject to similar limitations to those described above for
component files.

Auxiliary Processors
A Dyalog APL process is restricted to starting an AP of exactly the same architecture
from the same operating system. In other words, the APmust share the same word-
width and byte-ordering as its interpreter process.

Session Files
Session (.dse) files can only be used on the platform on which they were created and
saved. UnderMicrosoft Windows, Session files may only be used by the architecture
(32-bit-or 64-bit) of the Version of Dyalog that saved them.

Chapter 1: Introduction 23

Announcements
Tools and Interfaces
In addition to the software provided as part of the Dyalog installation package, there
are a growing number of tools and interfaces available for download fromGitHub.
For details, see https://www.dyalog.com/tools/tools-and-code-libraries.htm.

Withdrawal of Support for Version 14.1
The supported Versions of Dyalog APL are now Version 17.0, 16.0 and 15.0.
Version 14.1 and earlier versions are no longer supported.

Planned Operating System Requirements for the next version
Dyalog Ltd expects that the next version of Dyalog will require the following
minimum platform requirements:

Operating System Version

Microsoft Windows Windows 7 or Server 2008 R2

AIX 7.2 on POWER 7

Linux RedHat/Centos 7 or equivalent

OS X OS X Yosemite 10.10.x

Raspberry Pi Raspbian Jessie or above

Further updates to this information will appear on the Forums as and when available.

Planned Hardware Requirements for next version
The same as Dyalog Version 17.0.

Deprecation of small-span component files
As announced in the Version 16.0 Release Notes, the facility to write to small-span
component files has been removed. You may continue to tie and read small-span
component files.

However, if an attempt is made to execute any system function that would write to or
amend the file in any way, the operation will fail as follows:

https://www.dyalog.com/tools/tools-and-code-libraries.htm

Chapter 1: Introduction 24

FILE ACCESS ERROR: Small-span files are read-only; ⎕FCOPY
can create a writable large-span copy

The system functions that are affected are: ⎕FAPPEND, ⎕FREPLACE, ⎕FDROP,
dyadic ⎕FPROPS, ⎕FRENAME, ⎕FRESIZE, ⎕FSTAC. In addition, ⎕FCHK cannot
write to small-span files, so cannot perform Repair or Rebuild operations.

Bug Fixes
A number of bug fixes implemented in Version 17.0 may change the way that
existing code operates and are therefore documented in this section.

Incorrect Identity Element (9849)
When ⎕FR is 645, the expressions ⌈/2⍴1E400 and ⌈/2⍴1E400 now correctly
generate DOMAIN ERROR. Previously these expressions returned a (wrong) result.

Correction to System Function ⎕R
In earlier versions in Line mode (the default) ⎕R applied to an argument which ends
with multiple empty lines would return one fewer element than it was passed. In
Version 17.0 all the empty elements are preserved.

Examples

≢('a' ⎕r'bb') 'Andy' '' 'Pete'
3

≢('a' ⎕r'bb') 'Andy' '' 'Pete' ''
4

≢('a' ⎕r'bb') 'Andy' '' 'Pete' '' ''
5

In previous versions, the results were 3, 3, 4 respectively.

APL_COMPLEX_AS_V12 parameter
IfAPL_COMPLEX_AS_V12 is set to 1, objects containing complex numbers
cannot be transferred to or from component files, TCP/IP (CONGA), or auxiliary
processors and may not be used as an argument to Serialise/Deserialise Array (220⌶).
Instead, a DOMAIN ERROR will be issued.

Chapter 2: Miscellaneous 25

Chapter 2: Miscellaneous

Command-Line Options
The command-line to run the Dyalog program or a bound Dyalog executable may
now contain options which control how parameters are handled by the Dyalog
component.

-apl Option
The -apl option is designed to be used for bound executables. It causes the following
parameter to be passed to the Dyalog engine for processing. If multiple parameters
need to be passed to the Dyalog engine each must be preceded with -apl. In versions
prior to Version 17.0 all command-line parameters were ignored by the Dyalog DLL.

-cef Option
The -cef option is designed to be used with the Development EXE and the Run-Time
EXE. It causes the following parameter to be ignored by the Dyalog executable. In
versions prior to Version 17.0 all command-line parameters are passed to the Dyalog
executable, whether or not they are relevant to it.

This option is intended to isolate parameters intended for the built-in Chromium
Embedded Framework (CEF) which provides the HTMLRenderer object. See HTML
Renderer Documentation.

.

Chapter 2: Miscellaneous 26

IDE Enhancements
Backtick Keyboard
The Backtick keyboard provided by the RIDE may now be used natively. For
information on using this keyboard interface, see http://docs.dyalog.com/17.0/RIDE
User Guide.pdf Section 7.4.

By default, the Backtick keyboard is disabled . To enable it, select
Options/Configure from the Session menu, click the Unicode Input tab, then click
Configure Layout

Now check the option button labelled Enable Backtick Keyboard introducer. You
may replace the backtick character (`) with an alternative character to act as the
introducer for APL glyphs, but take care to choose a character that is otherwise
unused.

Finally, click OK. Despite the general warning message that appears, this change will
take effect and you may use the Backtick keyboard layout immediately.

Chapter 2: Miscellaneous 27

Find Objects Tool
The Find Objects tool is a modeless dialog box that may be toggled on and off by the
system action [WSSearch]. In a default Session, this action is attached to a
MenuItem in the Tools menu and a Button on the session toolbar.

The Find Objects tool allows you to search the active workspace for objects that
satisfy various criteria.

Name
The Named field is used to search for objects with a particular name and is case-
insensitive.

Containing Text
The Containing Text field is used to search for objects that contain a particular text
string. The string search is controlled by the fieldsMatch Case,Use Regular
Expressions,Match Whole Word and As Symbol Reference.

Match Case specifies whether or not the string search (for name and/or contents) is
case sensitive.

Use Regular Expressions specifies whether or not regular expressions are applicable.
For example, if you enter FOO* into the field labelled Containing Text and check
this box, the system will find objects that contain any text string starting with the 3
characters FOO.

Chapter 2: Miscellaneous 28

If this box is not checked, the system will find objects that contain the 4 characters
FOO*.

Text searches are performed using PCRE. If the Use Regular Expressions box is
checked, the full range of regular expressions provided by PCRE are available for
use. See Language Reference Guide: Appendix A.

Match Whole Word specifies whether or not the search is restricted to entire words.

As Symbol Reference specifies whether or not the search is restricted to APL symbols.
If so, matching text in comments and other strings is ignored.

Object Criteria
Four check boxes are provided for you to specify the types of objects you wish to
locate. For example, if you clear Variables,Operators and Namespaces, the system
will only search for functions.

To make the search dependent upon modification, you must check theModified
Objects check box.

To locate objects modified by a particular user, enter the user name in the field
labelled Modified by. Otherwise leave this blank.

To find objects which have been modified at a certain time or within a specified
period of time, check the appropriate radio button and enter the appropriate dates or
time spans.

If you wish to restrict the search to find only objects whose size is within a given
range, check the box labelled Size is between and enter values into the fields
provided.

Location Criteria
You can restrict the search to a particular namespace by typing its name into the field
labelled Look in. You can further restrict the search by clearing the Include sub-
namespaces and Include Session namespace check boxes. Clearing the former
restricts the search to the root namespace or to the namespace that you have specified
in Look in, and does not search within any sub-namespaces contained therein.
Clearing the latter causes the system to ignore ⎕SE in its search.

Chapter 2: Miscellaneous 29

When you press the Find Now button, the system searches for objects that satisfy all
of the criteria that you have specified on all 3 pages of the dialog box and displays
them in a ListView. The example below illustrates the result of searching the
workspace for all objects containing references to the symbol Speak.

You may change the way in which the objects are displayed in the ListView using
the View menu or the tool buttons, in the same manner as for objects displayed in the
Workspace Explorer. You may also edit, delete and rename objects in the same way.
Furthermore, objects can be copied or moved by dragging from the ListView in the
Search tool to the TreeView in the Explorer.

If you wish to specify a completely new set of criteria, press the New Search button.
This will reset all of the various controls of the dialog box to their default values.

Chapter 2: Miscellaneous 30

New Tool Buttons
Editor Toolbar
Two new buttons have been added to the Editor toolbar.

Button Description

Toggle tree view
Toggles the treeview on/off.

Previous Location
Certain operations (such as selecting an item in the
treeview) reposition the caret in the Editor window.
This button moves the caret back to its previous
location.

Session Tools
A new button has been added to the Session toolbar.

Boxing On/Off
Executes the user command]boxing to toggle boxing
on/off.

Chapter 2: Miscellaneous 31

Other Changes
l The left argument to ⎕CY may now be a vector of character vectors.
l 2000⌶ accepts a new argument 19 which reports the number of calls to
⎕WA and 2002⌶.

l For a VALUE ERROR, the error message and ⎕DMX now report the
undefined name.

l For a LIMIT ERROR caused by an insufficiency of GUI resources, ⎕DMX
now identifies the cause.

l ⎕FX has been extended to allow ∇s around functions.
l If a file contains a single function surrounded by ∇s the Editor treats it as a
single function. Previously this was not the case.

l Version 17.0 supports late binding of Base Classes and included
namespaces. This means that the Editor will fix a Class even though its
Base Class is not present in the workspace. The Base Class is only required
to be present when the Class is instantiated. The same is true for included
namespaces (namespaces declared using the :Include statement).

l If the system cannot infer the type of a file from its content, it treats it as a
function.

l ⎕STACK has changed so that when there is an inner dfn on the stack,
instead of reporting the ⎕OR of that inner dfn (which might be anonymous)
it reports the ⎕OR of the capsule (which is always named). A capsule is
defined as the outermost dfn in a set of nested dfns. This makes it more
consistent with ⎕LC and ⎕XSI and other stack-related functions, which
always work with capsules and capsule-relative line numbers.

l The left argument to ⎕ED is now a character scalar that specifies the type for
all the names in the right argument Y, or a character vector whose elements
specify the types of each of the corresponding names in Y.

l In earlier versions of Dyalog attempting to ⎕FIX a malformed scripted
object would result in the generic message:
DOMAIN ERROR: There were errors processing the
script. In Version 17.0 the error reported is the same as the first error
which appears in the status window; for example:
DOMAIN ERROR: invalid base class or interface
declaration.
A side effect of this is that ⎕DMX.ENX will be different, and the text and
error numbers that appear in the status window may differ compared with
earlier versions.

l The native-file related functions now include the file or directory name in
the error message.

l The position of the caret in an error report is more informative than in
previous versions and now identifies more precisely the operation that
failed.

Chapter 2: Miscellaneous 32

Chapter 3: Language Reference Changes 33

Chapter 3:

Language Reference Changes

Language Changes
The following table summarises the main changes to language features in Version
17.0.

Function Description Change

⎕CSV
Comma Separated
Values

Supports user-defined character set,
a new column type (numeric/empty)
and 3 new variant options to handle
metacharacters.

⎕MKDIR Make Directory Supports multiple files

⎕NCOPY Native File Copy New system function

⎕NDELETE Native File Delete Supports multiple files, wildcards
and recursion

⎕NEXISTS Native File Exists Supports multiple files and
wildcards

⎕NGET Read Text File Supports user-defined character set

⎕NINFO
Native File
Information

Supports multiple files, recursion
and additional file properties

⎕NPARTS Native File Parts Supports multiple files

⎕NMOVE Native File Move New system function

⎕NPUT Write Text File Supports user-defined character set
and append operation

⎕R and ⎕S Search/Replace Supports user-defined character set

Chapter 3: Language Reference Changes 34

Shy Results for System Functions
To facilitate the use of system functions in dfns, it has been decided to extend those
that (in previous versions) do not return a result, to return a shy result. This decision
affects the following system functions which now return shy results.

System Function Shy result

{X} ⎕ARBOUT Y ⍬

X ⎕CMD Y Process ID of created process

{X} ⎕CY Y 0⍴⊂''

{X} ⎕LOCK Y New lock level of Y

X ⎕SH Y Process ID of created process

⎕SHADOW Y Boolean vector

Due to the minor nature of the effect on the Version 17.0 documentation, the full
descriptions of these system functions are not included in these Release Notes.

Chapter 3: Language Reference Changes 35

Grade Down (Monadic) R←⍒Y

Ymay be any array of rank greater than 0 but may not contain namespaces. R is an
integer vector being the permutation of ⍳1↑⍴Y that places the sub-arrays along the
first axis in descending order. For the rules for comparing items of Y with one
another, see Grade Up (Monadic) on page 37.

⎕IO is an implicit argument of Grade Down.

Examples
⍒22.5 1 15 3 ¯4

1 3 4 2 5

M
2 3 5
1 4 7

2 3 4
5 2 4

2 3 5
1 2 6

⍒M
1 3 2

Note that character arrays sort differently in the Unicode and Classic Editions.

M
Goldilocks
porridge
Porridge
3 bears

Unicode Edition Classic Edition

⍒M
2 3 1 4

⍒M
3 1 4 2

M[⍒M;]
porridge
Porridge
Goldilocks
3 bears

M[⍒M;]
Porridge
Goldilocks
3 bears
porridge

Chapter 3: Language Reference Changes 36

⍴pb
6 3

pb
┌────────┬─────┬───┐
│Rivers │Jason│554│
├────────┼─────┼───┤
│Daintree│John │532│
├────────┼─────┼───┤
│Rivers │Jason│543│
├────────┼─────┼───┤
│Foad │Jay │558│
├────────┼─────┼───┤
│Scholes │John │547│
├────────┼─────┼───┤
│Scholes │John │535│
└────────┴─────┴───┘

⍒pb
5 6 1 3 4 2

Chapter 3: Language Reference Changes 37

Grade Up (Monadic) R←⍋Y

Ymay be any array of rank greater than 0 but may not contain namespaces. R is an
integer vector being the permutation of ⍳1↑⍴Y that places the sub-arrays along the
first axis in ascending order. The rules for comparing items of Y with one another are
as follows:

Rules for comparing simple scalars
l Numeric comparisons are exact, as if ⎕CT←⎕DCT←0 and ⎕FR←1287
l Two real numbers are compared numerically, thus 1.2 precedes 3.
l In the Unicode Edition two characters are compared numerically according
to their position in the Unicode table. Thus 'a' (⎕UCS 97) precedes
'b' (⎕UCS 98). In the Classic Edition characters are compared according
to their index in ⎕AV.

l Complex numbers are ordered by first comparing their real parts. If these are
equal, the order is determined by comparing their imaginary parts.
Thus 1J¯2 precedes 1 which precedes 1J2.

l ⎕NULL (which represents a null item obtained from an external source)
precedes all numbers, and all numbers precede all characters.
Thus ⎕NULL precedes 100, and 100 precedes 'A'.

Rules for comparing non-scalar arrays
l Arrays are compared item by item in ravel order.
l For arrays of equal shape, the order is determined by the first pair of items
which differ, thus (1949 4 29) precedes (1949 4 30). Similarly
('April' 29) precedes ('April' 30).

l Arrays with the same rank but different shape are ordered as if the shorter
array were padded with items that precede all other types of item (negative
infinity) including ⎕NULL. Thus 'car' precedes 'carpet'
and (1949 4) precedes (1949 4 30). An alternative model is to say
that shorter arrays precede longer ones that begin the same way. For
character vectors this is described as Lexicographical ordering, which is the
order that words appear in a dictionary.

l Arrays with differing rank are ordered by first extending the shape of the
lower-ranked array with 1s at the beginning, and then comparing the
resultant equal-rank arrays as described above. So, to compare a vector (rank
1) with a matrix (rank 2), the vector is reshaped into a 1-row matrix.

Chapter 3: Language Reference Changes 38

l Empty arrays are compared first by type alone, so an empty numeric array
precedes an empty character array, regardless of rank or shape.
Thus ((0 3 2)⍴0) precedes ''. If the empty arrays are of the same type,
they are sorted in order of their shape vector, working right to left.
So ((0 5 2)⍴99) precedes ((0 3 4)⍴0) and
((0 3 4)⍴'') precedes ((1 0 5 4)⍴'').

⎕IO is an implicit argument of Grade Up

Examples
⍋22.5 1 15 3 ¯4

5 2 4 3 1

M
2 3 5
1 4 7

2 3 4
5 2 4

2 3 5
1 2 6

⍋M
2 3 1

Note that character arrays sort differently in the Unicode and Classic Editions.

M
Goldilocks
porridge
Porridge
3 bears

Unicode Edition Classic Edition

⍋M
4 1 3 2

⍋M
2 4 1 3

M[⍋M;]
3 bears
Goldilocks
Porridge
porridge

M[⍋M;]
porridge
3 bears
Goldilocks
Porridge

Chapter 3: Language Reference Changes 39

⍴pb
6 3

pb
┌────────┬─────┬───┐
│Rivers │Jason│554│
├────────┼─────┼───┤
│Daintree│John │532│
├────────┼─────┼───┤
│Rivers │Jason│543│
├────────┼─────┼───┤
│Foad │Jay │558│
├────────┼─────┼───┤
│Scholes │John │547│
├────────┼─────┼───┤
│Scholes │John │535│
└────────┴─────┴───┘

⍋pb
2 4 3 1 6 5

Chapter 3: Language Reference Changes 40

Unique R←∪Y

Ymay be any array. R is a vector of the unique major cells of Y (the unique items of a
vector, the unique rows of a matrix and so forth), in the order in which they first
appear in Y. For further information, see Programming Reference Guide: Cells and
Subarrays.

⎕CT and ⎕DCT are implicit arguments of Unique.

Examples
∪ 22 10 22 22 21 10 5 10

22 10 21 5

∪ v←'CAT' 'DOG' 'CAT' 'DUCK' 'DOG' 'DUCK'
┌───┬───┬────┐
│CAT│DOG│DUCK│
└───┴───┴────┘

⊢mat←↑v
CAT
DOG
CAT
DUCK
DOG
DUCK

∪mat
CAT
DOG
DUCK

a←3 4 5⍴⍳20
a

1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
16 17 18 19 20

1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
16 17 18 19 20

1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
16 17 18 19 20

∪a
1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
16 17 18 19 20

Chapter 3: Language Reference Changes 41

Comma Separated Values {R}←{X} ⎕CSV Y

This function imports and exports Comma Separated Value (CSV) data.

Monadic ⎕CSV imports data from a CSV file or converts data from CSV format to an
internal format. Dyadic ⎕CSV exports data to a CSV file or converts data from
internal format to a CSV format.

Internal Format
Arrays that result from importing CSV data or arrays that are suitable for exporting as
CSV data are represented by 3 possible structures:

l A table (a matrix whose elements are character vectors or scalars, or
numbers).

l A vector, each of whose items contain field (column) values. Character field
values are character matrices; numeric field values are numeric vectors.

l A vector, each of whose items contain field (column) values. Character field
values are vectors of character vectors; numeric field values are numeric
vectors.

Note that when importing CSV data, all fields are assumed to be character fields
unless otherwise specified (see Column Types below). A field that contains only
"numbers" will not be converted to numeric data unless specified as being numeric.

MetaCharacters
Some characters in a CSV file are metacharacters which define the structure of the
data; for example, the field separator character between fields. Characters which are
not metacharacters are literal characters. The variant optionsQuoteChar,
EscapeChar and DoubleQuote make it possible to interpret metacharacters as literal
characters and thus permit fields to contain field separator characters, leading and
trailing spaces, and line-endings.

Fixed-width fields do not require these options and they are ignored if fixed-width
fields are being processed.

Chapter 3: Language Reference Changes 42

Monadic ⎕CSV
R←⎕CSV Y

Y is an array that specifies just the source of the CSV data (see below) or a 1,2,3 or 4-
element vector containing:

[1] Source of CSV Data

[2] Description of the CSV data

[3] Column Types

[4] Header Row Indicator

Sourcemay be one of:

l a character vector or scalar containing a file name
l a native tie number
l a character vector or scalar containing CSV data with embedded newline
characters. To avoid this source being interpreted as a file name, Y[2] must
be specified as 'S'.

l a vector of character vectors and/or scalars containing CSV data with
implicit newlines after each character vector or scalar

Description

If Y[1] is a file name or tie numberDescription may be one of:

l a character vector specifying the file encoding such as 'UTF-8'.
l a 256-element numeric vector that maps each possible byte value (0-255) to
a Unicode code point (1st element = Unicode code point corresponding to
byte value 0, and so on). ¯1 indicates that the corresponding byte value is
not mapped to any character. Apart from ¯1, no value may appear in the
table more than once.

If omitted or empty, the file encoding is deduced (see below).

If Y[1] is a character array containing CSV data Description is a character scalar
'S' (simple) or 'N' (nested). The default is 'N'

Chapter 3: Language Reference Changes 43

Column Types

This is a scalar numeric code or vector of numeric codes that specifies the field types
from the list below. IfColumn Types is zilde or omitted, the default is 1 (all fields are
character).

0 The field is ignored.

1 The field contains character data.

2
The field is to be interpreted as being numeric. Empty cells and cells
which cannot be converted to numeric values are not tolerated and cause
an error to be signalled.

3
The field is to be interpreted as being numeric but invalid numeric vales
are tolerated. Empty fields and fields which cannot be converted to
numeric values are replaced with the Fill variant option (default 0).

4

The field is to be interpreted numeric data but invalid numeric data is
tolerated. Empty fields and fields which cannot be converted to numeric
values are returned instead as character data; this type is disallowed when
variant option Invert is set to 1.

5

The field is to be interpreted as being numeric but empty fields are
tolerated and are replaced with the Fill variant option (default 0). Non-
empty cells which cannot be converted to numeric values are not tolerated
and cause an error to be signalled.

Note that ifColumn Types is specified by a scalar 4, all numeric data in all fields will
be converted to numbers.

Header Row Indicator

This is a Boolean value (default 0) to specify whether or not the first record in a
CSV file is a list of column labels. IfHeader Row Indicator is 1, the first record (the
header row) is treated differently from other records. It is assumed to contain
character data (labels) regardless of Y[3] and is returned separately in the result.

Chapter 3: Language Reference Changes 44

Variant options
Monadic ⎕CSVmay be applied using the Variant operator with the following
options. The Principal option is Invert.

Name Meaning Default

Invert 0, 1 or 2 (see below) 0

Separator The field separator, any single character. If Widths is
other than ⍬, Separator is ignored. ','

Widths
A vector of numeric values describing the width (in
characters) of the corresponding columns in the CSV
source, or ⍬ for variable width delimited fields

⍬

Decimal The decimal mark in numeric fields - one of '.' or
','

'.'

Thousands
The thousands separator in numeric fields, which may
be specified as an empty character vector (meaning
no separator is defined) or a character scalar

''

Trim
A Boolean specifying whether
undelimited/unescaped whitespace is trimmed at the
beginning and end of fields

1

Ragged A Boolean specifying whether records with varying
numbers of fields are allowed; see notes below 0

Fill The numeric value substituted for invalid numeric
data in columns of type 3 0

Records
The maximum number of records to process or 0 for
no limit. This applies only to a file specified by a tie
number.

0

QuoteChar
The field quote character (delimiter), which may be
specified as an empty character vector (meaning none
is defined) or a character scalar

"

EscapeChar
The escape character, which may be specified as an
empty character vector (meaning none is defined) or a
character scalar

''

DoubleQuote
A Boolean which indicates whether (1) or not (0) a
quote character within a quoted field is represented
by two consecutive quote characters

1

Chapter 3: Language Reference Changes 45

The Separator,QuoteChar and EscapeChar characters, when defined, must be
different.

Other options defined for export are also accepted but ignored.

Invert Option
This option specifies how the CSV data should be returned as follows:

0
A table (a matrix whose elements are character vectors or scalars or
numbers).

1
A vector, each of whose items contain field (column) values. Character
field values are character matrices; numeric field values are numeric
vectors.

2
A vector, each of whose items contain field (column) values. Character
field values are vectors of character vectors; numeric field values are
numeric vectors.

QuoteChar, EscapeChar and DoubleQuote Options
IfEscapeChar is set then any character may be prefixed by the escape character. The
escape character is typically defined as '\'. The escape character immediately
followed by the character c is the literal character c even if c alone would have been
a metacharacter.

IfQuoteChar is set then fields may be delimited by the specified quote character.
Within quoted fields all characters except the quote character, and the escape
character if defined, are literal characters.

IfDoubleQuote is set to 1 then two consecutive quote characters within a quoted
field are interpreted as the single literal quote character.

Result
The result R contains the imported data.

If Y[4] does not specify that the data contains a header then R contains the entire
data in the form specified by the Invert variant option.

If Y[4] does specify that the data contains a header then R is a 2-element vector
where:

l R[1] is the imported data excluding the header.
l R[2] is a vector of character vectors containing the header record.

Chapter 3: Language Reference Changes 46

Examples

⊃⎕NGET CSVFile←'c:\Dyalog16.0\sales.csv'
┌→───┐
│Product,Sales │
│ Widgets,1912 │
│ Gimlets,205 │
│ Dingbats,189│
│ │
└──┘

⎕CSV CSVFile
┌→───────────────────┐
↓ ┌→──────┐ ┌→────┐ │
│ │Product│ │Sales│ │
│ └───────┘ └─────┘ │
│ ┌→──────┐ ┌→───┐ │
│ │Widgets│ │1912│ │
│ └───────┘ └────┘ │
│ ┌→──────┐ ┌→──┐ │
│ │Gimlets│ │205│ │
│ └───────┘ └───┘ │
│ ┌→───────┐ ┌→──┐ │
│ │Dingbats│ │189│ │
│ └────────┘ └───┘ │
└∊───────────────────┘

Chapter 3: Language Reference Changes 47

⎕CSV CSVFile'' ⍬ 1 ⍝ Header row
┌→──┐
│ ┌→──────────────────┐ ┌→──────────────────┐ │
│ ↓ ┌→──────┐ ┌→───┐ │ │ ┌→──────┐ ┌→────┐ │ │
│ │ │Widgets│ │1912│ │ │ │Product│ │Sales│ │ │
│ │ └───────┘ └────┘ │ │ └───────┘ └─────┘ │ │
│ │ ┌→──────┐ ┌→──┐ │ └∊──────────────────┘ │
│ │ │Gimlets│ │205│ │ │
│ │ └───────┘ └───┘ │ │
│ │ ┌→───────┐ ┌→──┐ │ │
│ │ │Dingbats│ │189│ │ │
│ │ └────────┘ └───┘ │ │
│ └∊──────────────────┘ │
└∊──┘

⎕CSV CSVFile''(1 2)1 ⍝ Fields are Char, Num
┌→──┐
│ ┌→────────────────┐ ┌→──────────────────┐ │
│ ↓ ┌→──────┐ │ │ ┌→──────┐ ┌→────┐ │ │
│ │ │Widgets│ 1912 │ │ │Product│ │Sales│ │ │
│ │ └───────┘ │ │ └───────┘ └─────┘ │ │
│ │ ┌→──────┐ │ └∊──────────────────┘ │
│ │ │Gimlets│ 205 │ │
│ │ └───────┘ │ │
│ │ ┌→───────┐ │ │
│ │ │Dingbats│ 189 │ │
│ │ └────────┘ │ │
│ └∊────────────────┘ │
└∊──┘

(⎕CSV⍠'Invert' 1)CSVFile'' (1 2) 1 ⍝ Invert 1
┌→──┐
│ ┌→──────────────────────────┐ ┌→──────────────────┐ │
│ │ ┌→───────┐ ┌→───────────┐ │ │ ┌→──────┐ ┌→────┐ │ │
│ │ ↓Widgets │ │1912 205 189│ │ │ │Product│ │Sales│ │ │
│ │ │Gimlets │ └~───────────┘ │ │ └───────┘ └─────┘ │ │
│ │ │Dingbats│ │ └∊──────────────────┘ │
│ │ └────────┘ │ │
│ └∊──────────────────────────┘ │
└∊──┘

⊃(⎕CSV⍠'Invert' 2)CSVFile'' (1 2) 1 ⍝ Invert 2
┌→──┐
│ ┌→───────────────────────────────┐ ┌→───────────┐ │
│ │ ┌→──────┐ ┌→──────┐ ┌→───────┐ │ │1912 205 189│ │
│ │ │Widgets│ │Gimlets│ │Dingbats│ │ └~───────────┘ │
│ │ └───────┘ └───────┘ └────────┘ │ │
│ └∊───────────────────────────────┘ │
└∊──┘

Chapter 3: Language Reference Changes 48

Notes
l When Y specifies just the source of the CSV data, it does not need to be
enclosed or ravelled to create a 1-element vector.

l Y[2], the description of the source, distinguishes an otherwise ambiguous
character vector source (which could contain either CSV data or a file
name). The other source forms are unambiguous but the description, when
given, must still match the given source type.

l Tab-separated fields may be imported by specifying 'Separator'
(⎕UCS 9).

l Fields containing embedded new lines are supported (they must, of course,
appear in quotes or be prefixed by the escape character). On import, line
endings are always converted to a single line feed character.

l If Ragged is not set then all records must have the same number of fields
(character delimited format) or same number of characters (fixed width field
format).

l If Ragged is set:
o The expected number of columns must be specified using the Widths

variant option and/or the column types in Y[3].
o In character delimited format, all processed records are implicitly

extended or truncated as required so that they contain the expected
number of fields; implicitly added fields will be empty.

o In fixed width format, all processed records are implicitly extended
with spaces or truncated as required so that they contain as many
characters as are specified in the Widths option declaration.

Chapter 3: Language Reference Changes 49

File handling
Data may be read from a named file or a tied native file. A tied native file may be read
in sections by repeatedly invoking ⎕CSV for a specified maximum number of records
(specified by the Records variant) until no more data is read.

In all cases the files must contain text using one of the supported encodings. The
method used to determine the file encoding is as follows:

l If a Byte Order Mark (BOM) is encountered at the start of the file, it is used
regardless of Y[2] (if specified). Note, however, that the BOM can only be
encountered if the file is read from the start - specifically, if a native file is
read in sections, any BOM present will only be encountered when the first
section is read.

l Otherwise, the file will be read and decoded according to the file encoding
in Y[2] if specified.

l Otherwise:
o Native files will be decoded as if 'UTF-8' had been specified.
o Files specified by name will be examined and the likely file encoding

will be deduced using the same heuristics performed by ⎕NGET.

Note also:
l Native files are read from the current file position. On successful
completion, the file position will be at the first unprocessed character (end
of file if the Records variant option is not specified). If an error is signalled
the file position is undefined.

l The result does not report the file encoding or line ending type as it does
with ⎕NGET. If this information is required then it must be obtained by
other means.

Chapter 3: Language Reference Changes 50

Dyadic ⎕CSV
{R}←X ⎕CSV Y

The left argument X is either:

l a matrix or a vector of vectors/matrices containing the data to be converted
to CSV format.

l or a 2-element vector containing a matrix or vector of vectors/matrices
containing the data to be converted to CSV format, and a vector of character
vectors containing the header record.

Y is a 1 or 2-element vector containing:

[1] Destination of CSV Data (see below)

[2] Description of the CSV data (see below)

Destination - may be one of:

l a character vector or scalar containing a file name
l a native tie number
l an empty character vector, indicating that the CSV data is to be returned in
the result R

Description

If Y[1] is a file name or tie number,Description may be:

l a character vector specifying the file encoding such as 'UTF-8'.
l a 256-element numeric vector that maps each possible byte value (0-255) to
a Unicode code point (1st element = Unicode code point corresponding to
byte value 0, and so on). ¯1 indicates that the corresponding byte value is
not mapped to any character. Apart from ¯1, no value may appear in the
table more than once.

If Y[1] is empty,Description may be a character scalar 'S' (simple) or 'N'
(nested). If omitted, the default is 'S'

Chapter 3: Language Reference Changes 51

Variant options
Dyadic ⎕CSVmay be applied using the Variant operator with the following options.

Name Meaning Default

IfExists

a character vector 'Error' or 'Replace'
which specifies, when creating a named file
which already exists, whether to overwrite it
('Replace') or signal an error ('Error')

'Error'

Separator the field separator, any single character. If Widths
is other than ⍬, Separator is ignored. ','

Widths

a vector of numeric values describing the width
(in characters) of the corresponding columns in
the CSV source, or ⍬ for variable width delimited
fields

⍬

Decimal the decimal mark in numeric fields - one of '.'
or ',' '.'

Thousands

the thousands separator in numeric fields, which
may be specified as an empty character vector
(meaning no separator is defined) or a character
scalar

''

Trim
a Boolean specifying whether whitespace is
trimmed at the beginning and end of character
fields

1

LineEnding the line ending sequence

(13 10) on
Windows;
10 on other
platforms

QuoteChar
The field quote character (delimiter), which may
be specified as an empty character vector
(meaning none is defined) or a character scalar

"

EscapeChar
The escape character, which may be specified as
an empty character vector (meaning none is
defined) or a character scalar

''

DoubleQuote
A Boolean which indicates whether (1) or not (0)
a quote character within a quoted field is
represented by two consecutive quote characters

1

Chapter 3: Language Reference Changes 52

The Separator,QuoteChar and EscapeChar characters, when defined, must be
different. Other options defined for import are also accepted but ignored.

TheOverwrite variant option (Boolean) from Version 16.0 remains supported but is
deprecated in favour of IfExists.

QuoteChar, EscapeChar and DoubleQuote options
l The CSV text will be generated such that it can be read back according to
the corresponding rules for import.

l If these options do not permit this (for example, a field contains the quote
character and neither DoubleQuote or EscapeChar are set) an error is
signalled.

l Quoting and Escaping is used as conservatively as possible.
l If both QuoteChar and EscapeChar are set, quoting is favoured.

If Y specifies that the CSV data is written to a file then R is the number of bytes (not
characters) written, and is shy.

Otherwise, R is the CSV data in the format specified in Y, and is not shy.

Examples
CSVFile←'c:\Dyalog16.0\sales.csv'
⎕←DATA HDR←⎕CSV CSVFile''(1 2)1

┌→──┐
│ ┌→────────────────┐ ┌→──────────────────┐ │
│ ↓ ┌→──────┐ │ │ ┌→──────┐ ┌→────┐ │ │
│ │ │Widgets│ 1912 │ │ │Product│ │Sales│ │ │
│ │ └───────┘ │ │ └───────┘ └─────┘ │ │
│ │ ┌→──────┐ │ └∊──────────────────┘ │
│ │ │Gimlets│ 205 │ │
│ │ └───────┘ │ │
│ │ ┌→───────┐ │ │
│ │ │Dingbats│ 189 │ │
│ │ └────────┘ │ │
│ └∊────────────────┘ │
└∊──┘

Chapter 3: Language Reference Changes 53

DATA⍪←'Gizmos' 23
DATA HDR ⎕CSV''

┌→────────────┐
│Product,Sales│
│ │
│Widgets,1912 │
│ │
│Gimlets,205 │
│ │
│Dingbats,189 │
│ │
│Gizmos,23 │
│ │
│ │
└─────────────┘

CSVFile1←'c:\Dyalog16.0\sales1.csv'
⎕←DATA HDR ⎕CSV CSVFile1

67
DATA⍪←'Gimbals' 123
⎕←DATA HDR ⎕CSV CSVFile1

FILE NAME ERROR: Unable to create file ("The file
exists.")

⎕←DATA HDR ⎕CSV CSVFile1
∧
⎕←DATA HDR(⎕CSV⍠'IfExists' 'Replace')CSVFile1

80

Chapter 3: Language Reference Changes 54

Notes
l When Y contains only the destination of the CSV data (i.e. omits the
description in its second element) it does not have to be enclosed to form a
single element vector.

l Native files are written from the current file position. On successful
completion, the file position will be at the end of the written data. If an
error is signalled the amount of data written is undefined.

l If the file encoding specifies that a BOM is required and output is to a
native file, it will only be written if the file position is initially at 0 - that
is, the start of the file is being written.

l When fixed width fields are written, character data shorter than the specified
width is padded with spaces to the right and character data longer than the
specified width signals an error. Numeric data is converted to character data
as far as possible so that it fits into the specified width. If this is not
possible, an error is signalled.

l Tab-separated fields may be exported by specifying 'Separator'
(⎕UCS 9).

l Fields containing a single embedded new line are supported. On export, line
feed characters are mapped back to the defined line ending sequence.

Chapter 3: Language Reference Changes 55

Make Directory {R}←{X}⎕MKDIR Y

This function creates new directories.

Y is a character vector or scalar containing a single directory name, or a vector of
character vectors containing zero or more directory names. Names must conform to
the naming rules of the host Operating System.

By default, for each file in Y the path must exist and the base name must not exist (see
File Name Parts on page 79), otherwise an error is signalled. The optional left
argument X is the numeric scalar 0, 1, 2 or 3 which amends this behaviour as shown
in the following table. If omitted, it is assumed to be 0.

0 Default behaviour.

1
No action is taken if a directory specified by Y already exists. The return
value may be used to determine whether a new directory was created or
not.

2
Any part of the paths specified in Y which does not already exist will be
created in preparation of creating the corresponding directory.

3 Combination of 1 and 2.

If Y specifies a single name, the shy result R is a scalar 1 if a directory was created or 0
if not. If Y is a vector of character vectors, R is a vector of 1s and 0s with the same
length as Y.

Examples
⎕NEXISTS '/Users/Pete/Documents/temp'

0
⎕←⎕MKDIR '/Users/Pete/Documents/temp'

1
⎕←⎕MKDIR '/Users/Pete/Documents/temp'

FILE NAME ERROR: Directory exists
⎕←⎕MKDIR'/Users/Pete/Documents/temp'

∧

⎕←⎕MKDIR'/Users/Pete/Documents/temp/t1/t2'
FILE NAME ERROR: Unable to create directory ("The system
cannot find the path specified.")

⎕←⎕MKDIR'/Users/Pete/Documents/temp/t1/t2'
∧

⎕←2 ⎕MKDIR'/Users/Pete/Documents/temp/t1/t2'
1

⊢⎕MKDIR'temp1' 'temp2'
1 1

Chapter 3: Language Reference Changes 56

Note
When multiple names are specified they are processed in the order given. If an error
occurs at any point whilst creating directories, processing will immediately stop and
an error will be signalled. The operation is not atomic; some directories may be
created before this happens. In the event of an error there will be no result and
therefore no indication of how many directories were created before the error
occurred.

Chapter 3: Language Reference Changes 57

Native File Copy {R}←X ⎕NCOPY Y

This function copies native files and directories from one or more sources specified
by Y to a destination specified by X. ⎕NCOPY is similar to ⎕NMOVE (see Native File
Move on page 75).

X is a character vector that specifies the name of the destination.

Y is a character vector that specifies the name of the source, or a vector of character
vectors containing zero or more sources.

Source and destination path names may be full or relative (to the current working
directory) path names which adhere to the operating system conventions.

If X specifies an existent directory then each source in Y is copied into that directory,
otherwise X specifies the name of the copy. Xmust specify an existent directory if the
source contains multiple names or if the Wildcard option is set.

The shy result R contains count(s) of top-level items copied. If Y is a single source
name, R is a scalar otherwise it is a vector of the same length as Y.

Variant Options
⎕NCOPYmay be applied using the Variant operator with the optionsWildcard (the
Principal option), IfExists and PreserveAttributes.

Wildcard Option (Boolean)
0 the name or names in Y identifies a specific file name.

1

the name or names in Y that specify the base name and
extension (see File Name Parts on page 79), may also contain
the wildcard characters "?" and "*". An asterisk is a substitute
for any 0 or more characters in a file name or extension; a
question-mark is a substitute for any single character.

Note that whenWildcard is 1, element(s) of R can be 0, 1 or >1. IfWildcard is 0,
elements of R are always 1.

Chapter 3: Language Reference Changes 58

IfExists Option
The IfExists variant option determines what happens when a source file is to be
copied to a target file that already exists. It does not apply to directories, only to the
files within them.

Value Description

'Error'
Existing files will not be overwritten and an error
will be signalled. This is the default

'Skip'
Existing files will not be overwritten but the
corresponding copy operation will be skipped
(ignored).

'Replace' Existing files will be overwritten.

'ReplaceIfNewer'

Existing files may be overwritten if, and only if, the
corresponding source file is newer (more recently
modified) than the existing one, otherwise it is
skipped.

The following cases cause an error to be signalled regardless of the value of the
IfExists variant.

l If the source specifies a directory and the destination specifies an existing
file.

l If the source specifies a file and the same base name exists as a sub-directory
in the destination.

PreserveAttributes Option (Boolean)
The PreserveAttributes variant option determines whether or not file attributes are
preserved. It does not apply to directories, only to files.

0 file attributes are not preserved.

1
where possible, copied files will be given at least the same
modification time as the source. Other file attributes will be
preserved as permitted by the operating system and file system.

Note also that when files are copied across file systems, the different file systems may
have different timestamp granularity and the timestamps may not be exactly the
same.

Chapter 3: Language Reference Changes 59

Examples
There are a number of possibilities which are illustrated below. In all cases, if the
source is a file, a copy of the file is created. If the source is a directory, a copy of the
directory and all its contents is created.

Examples (single source, Wildcard is 0)
l The source name must be an existent file or directory.
l If the destination name does not exist but its path name does exist, the
source is copied to the destination name.

l If the destination name is an existing directory the copy is created within
that directory with the base name of the source.

⊃1 ⎕NPARTS ''
i:/Documents/Dyalog APL-64 17.0 Unicode Files/

⍝ Make a named back-up of the Session file
⊢'session.bak' ⎕NCOPY 'default.dlf'

1
⊢ ⎕MKDIR 'backups' ⍝ Make a backups directory

1
⍝ Copy the Session file to backups directory

⊢'backups'⎕NCOPY'default.dlf'
1

↑⊃0 (⎕NINFO⍠1) 'backups*'
backups/default.dlf

Examples (single source, Wildcard is 1)
l The source name may include wildcard characters which matches a number
of existing files and/or directories. The destination name must be an existing
directory.

l The files and/or directories that match the pattern specified by the source
name are copied into the destination directory. If there are no matches, zero
copies are made.

⊃1 ⎕NPARTS ''
i:/Documents/Dyalog APL-64 17.0 Unicode Files/

⊢ ⎕MKDIR 'backups' ⍝ Make a backups directory
1
⍝ Copy all files to backups directory

⊢'backups'(⎕NCOPY⍠'Wildcard' 1)'*.*'
3

Chapter 3: Language Reference Changes 60

↑⊃0 (⎕NINFO⍠1) 'backups*'
backups/default.dlf
backups/def_uk.dse
backups/UserCommand20.cache

Examples (multiple sources, Wildcard is 0)
l Each source name must specify a single file or directory which must exist.
The destination name must be an existing directory.

l Copies of each of the files and/or directories specified by the source base
names are made in the destination directory.

⊃1 ⎕NPARTS ''
i:/Documents/Dyalog APL-64 17.0 Unicode Files/

⊢ ⎕MKDIR 'backups' ⍝ Make a backups directory
1
⍝ Copy 2 files to backups directory

⊢'backups'⎕NCOPY'default.dlf' 'def_uk.dse'
1 1

↑⊃0 (⎕NINFO⍠1) 'backups*'
backups/default.dlf
backups/def_uk.dse

Examples (multiple sources, Wildcard is 1)
l The destination name must be an existing directory.
l Copies of each of the files and/or directories that match the patterns
specified by the source names (if any) are made in the destination directory.

⊃1 ⎕NPARTS ''
i:/Documents/Dyalog APL-64 17.0 Unicode Files/

⊢ ⎕MKDIR 'backups' ⍝ Make a backups directory
1
⍝ Copy files to backups directory

⊢'backups'(⎕NCOPY⍠1)'d*' 'UserCommand20.cache'
2 1

↑⊃0 (⎕NINFO⍠1) 'backups*'
backups/default.dlf
backups/def_uk.dse
backups/UserCommand20.cache

Chapter 3: Language Reference Changes 61

Notes
l The special directories . and .. can never be copied into an existing
directory.

l If any source name is a symbolic link it is dereferenced; that is, the source
or directory it references is copied rather than the link itself.

l In the result R, a directory together with all its contents is counted once. A
directory may be partially copied if the IfExists option is set to
'Replace' or 'ReplaceIfNewer').

l If an error occurs during the copy process then processing will immediately
stop and an error will be signalled. The operation is not atomic; some items
may be copied before this happens. In the event of an error there will be no
result and therefore no indication of how many names were copied before
the error occurred.

Chapter 3: Language Reference Changes 62

Native File Create {R}←X ⎕NCREATE Y

This function creates a new file. UnderWindows the file is opened with mode 66 .
Under non-Windows operating systems the current umask will specify the file
permissions. The name of the new file is specified by the left argument X which must
be a simple character vector or scalar containing a valid pathname for the file.

Y is 0 or a negative integer value that specifies an (unused) tie number by which the
file may subsequently be referred. If Y is 0, the system allocates the first (closest to
zero) available tie number which is returned as the result.

The shy result of ⎕NCREATE is the tie number of the new file.

Variant Options
⎕NCREATEmay be applied using the Variant operator with the optionsUnique and
IfExists. There is no primary option.

Unique Option (Boolean)
0 the file named by X will be created

1

a uniquely named file will be created by extending the base
name (see File Name Parts on page 79) with random characters.
If a unique name cannot be created then an error will be
signalled. The actual name of the file can be determined from
⎕NNAMES or ⎕NINFO.

IfExists Option (character vector)

Error
⎕NCREATE will generate a FILE NAME ERROR if the file
already exists

Replace
⎕NCREATE will replace an existing file with an empty one of
the same name.

Chapter 3: Language Reference Changes 63

Examples
⊢'myfile' ⎕NCREATE 0

¯1
⎕NUNTIE ¯1
⊢'myfile' ⎕NCREATE 0

FILE NAME ERROR: myfile: Unable to create file ("The file
exists.")

⊢'myfile'⎕NCREATE 0
∧

⊢'myfile' (⎕NCREATE⍠'IfExists' 'Replace') 0

¯1 ⍝ Note that it uses same tie number as before

⊢'myfile' (⎕NCREATE⍠('Unique' 1)) 0
¯2

⎕NNUMS,⎕NNAMES
¯1 myfile
¯2 myfile52c36z

Notes:
l Setting IfExists to Replace has no effect when Unique is 1, because the
file cannot already exist.

l The IfExists option does not affect the operation of slippery ties.

Chapter 3: Language Reference Changes 64

Native File Delete {R}←{X}⎕NDELETE Y

This function deletes files and directories.

Y is a character vector or scalar containing a single file or directory name, or a vector
of character vectors containing zero or more file or directory names. Names must
conform to the naming rules of the host Operating System.

The optional left argument X is a numeric scalar; valid values are shown in the
following table. If omitted, its default value is 0.

0 Each file or directory with the given name must exist.

1
If the file or directory with the given name does not exist then no action is
taken. The result R may be used to determine whether the file or directory
was deleted or not.

2
If a name identifies a non-empty directory it, and all its contents, are to be
deleted.

3 Combination of 1 and 2.

R is a numeric count of top-level entities deleted when processing the corresponding
name in Y. If Y specifies a single name, R is a scalar. If Y is a vector of character
vectors R is a vector with the same length as Y.

Variant Options
⎕NDELETEmay be applied using the Variant operator with theWildcard option.

Wildcard Option (Boolean)
0 the name or names in Y identifies a specific file name.

1

the name or names in Y that specify the base name and
extension (see File Name Parts on page 79), may also contain
the wildcard characters "?" and "*". An asterisk is a substitute
for any 0 or more characters in a file name or extension; a
question-mark is a substitute for any single character.

Note that when Wildcard is 1, element(s) of R can be 0 or >1. If Wildcard is 0,
elements of R are always 1.

If Y specifies the name of a symbolic link, ⎕NDELETE deletes that symbolic link; the
target of the symbolic link is unaffected.

Chapter 3: Language Reference Changes 65

Examples
⎕NEXISTS'/Users/Pete/Documents/temp/t1/t2'

1
⊢⎕NDELETE'/Users/Pete/Documents/temp/t1/t2'

1
⊢⎕NDELETE'/Users/Pete/Documents/temp/t1/t2'

FILE NAME ERROR: Invalid file or directory name ("The
system cannot find the file specified.")

⊢⎕NDELETE'/Users/Pete/Documents/temp/t1/t2'
∧

⊢1 ⎕NDELETE'/Users/Pete/Documents/temp/t1/t2'
0

⊢⎕NDELETE 'temp1' 'temp2'
1 1

⊢⎕MKDIR'temp1' 'temp2'
1 1

⊢(⎕NDELETE⍠1)'t*'
2

⊢⎕MKDIR'temp1'
1

⊢'Hello World' ⎕NPUT 'temp1/hw.txt'
13

⊢⎕NDELETE 'temp1'
FILE ACCESS ERROR: temp1: Unable to delete directory
("The directory is not empty.")

⊢⎕NDELETE'temp1'
∧

⊢2 ⎕NDELETE 'temp1'
1

If the file is in use or the current user is not authorised to delete it, ⎕NDELETE will
not succeed but will instead generate a FILE ACCESS ERROR.

Note
When multiple names are specified they are processed in the order given. If an error
occurs at any point whilst deleting files or directories, processing will immediately
stop and an error will be signalled. The operation is not atomic; the directory
contents may be partially deleted before this happens. In the event of an error there
will be no result and therefore no indication of how many files were deleted before
the error occurred.

Chapter 3: Language Reference Changes 66

Native File Exists R←⎕NEXISTS Y

This function reports whether or not file and directories exist.

Y is a character vector or scalar containing a single directory name, or a vector of
character vectors containing zero or more directory names. Names must conform to
the naming rules of the host Operating System.

If Y specifies a single name, the result R is a scalar 1 if a file or directory exists or 0 if
not. If Y is a vector of character vectors, R is a vector of 1s and 0s with the same
length as Y.0

Variant Options
⎕NEXISTSmay be applied using the Variant operator with theWildcard option.

Wildcard Option (Boolean)
0 the name or names in Y identifies a specific file name.

1

the name or names in Y that specify the base name and
extension (see File Name Parts on page 79), may also contain
the wildcard characters "?" and "*". An asterisk is a substitute
for any 0 or more characters in a file name or extension; a
question-mark is a substitute for any single character.

If the Wildcard option is 1, R indicates whether or not one or more matches to the
corresponding pattern in Y exist.

Example
⎕←⎕MKDIR'/Users/Pete/Documents/temp/t1/t2'

1
⎕NEXISTS'/Users/Pete/Documents/temp/t1/t2'

1
⎕NEXISTS'/Users/Pete/Documents/temp/t1/t2/pd'

0

⊢⎕MKDIR'temp1' 'temp2'
1 1

⎕NEXISTS 'temp1' 'temp2' 'temp3'
1 1 0

(⎕NEXISTS⍠1) 't*'
1

Note
If Y is a symbolic link, ⎕NEXISTS will return 1 whether or not the target of the
symbolic link exists.

Chapter 3: Language Reference Changes 67

Read Text File R←{X} ⎕NGET Y

This function reads the contents of the specified text file. See also Write Text File on
page 81.

Y is either a character vector/scalar containing the name of the file to be read, or a 2-
item vector whose first item is the file name and whose second is an integer scalar
specifying flags for the operation.

If flags is 0 (the default value if omitted) the content in the result R is a character
vector. If flags is 1 the result is a nested array of character vectors corresponding to
the lines in the file.

The optional left-argument X is either

l a character vector that specifies the file-encoding as shown in the table
below.

l a 256-element numeric vector that maps each possible byte value (0-255) to
a Unicode code point (1st element = Unicode code point corresponding to
byte value 0, and so on). ¯1 indicates that the corresponding byte value is
not mapped to any character. Apart from ¯1, no value may appear in the
table more than once.

Table 1: File Encodings
Encoding Description

UTF-8 The data is encoded as UTF-8 format.

UTF-16LE The data is encoded as UTF-16 little-endian format.

UTF-16BE The data is encoded as UTF-16 big-endian format.

UTF-16
The data is encoded as UTF-16 with the endianness of the host
system (currently BE on AIX platforms, LE on all others).

UTF-32LE The data is encoded as UTF-32 little-endian format.

UTF-32BE The data is encoded as UTF-32 big-endian format.

UTF-32
The data is encoded as UTF-32 with the endianness of the host
system (currently BE on AIX platforms, LE on all others).

ASCII The data is encoded as 7-bit ASCII format.

Windows-
1252

The data is encoded as 8-bit Windows-1252 format.

ANSI ANSI is a synonym of Windows-1252.

Chapter 3: Language Reference Changes 68

The above UTF formats may be qualified with -BOM or -NOBOM (e.g. UTF-8-
BOM). SeeWrite Text File on page 81.

Whether or not X is specified, if the start of the file contains a recognised Byte Order
Mark (BOM), the file is decoded according to the BOM. Otherwise, if X is specified
the file is decoded according to the value of X. Otherwise, the file is examined to try
to decide its encoding and is decoded accordingly.

The result R is a 3-element vector comprising (content) (encoding)
(newline) where:

content
A simple character vector, or a vector of character vectors,
according to the value of flags.

encoding

The encoding that was actually used to read the file. If this is a
UTF format, it will always include the appropriate endianness
(except for UTF-8 to which endianness doesn't apply) and a -
BOM or -NOBOM suffix to indicate whether or not a BOM is
actually present in the file. For example, UTF-16LE-BOM.

If X specified a user-defined encoding as a 256-element numeric
vector, encoding will be that same vector.

newline
Determined by the first occurrence in the file of one of the
newline characters identified in the line separator table, or ⍬ if
no such line separator is found.

If content is simple then all its line separators (listed in the table below) are
replaced by (normalised to) ⎕UCS 10, which in the Classic Edition must be in ⎕AVU
(else TRANSLATION ERROR).

If content is nested, it is formed by splitting the contents of the file on the
occurrence of any of the line separators shown in the table below. These line
separators are removed.

The 3rd element of the result newline is a numeric vector from the Value column of
the table below corresponding to the first occurrence of any of the newline
characters in the file. If none of these characters are present, the value is ⍬.

Chapter 3: Language Reference Changes 69

Table 2: Line separators:
Value Code Description

newline characters

13 CR Carriage Return (U+000D)

10 LF Line Feed (U+000A)

13 10 CRLF Carriage Return followed by Line Feed

133 NEL New Line (U+0085)

other line separator characters

11 VT Vertical Tab (U+000B)

12 FF Form Feed (U+000C)

8232 LS Line Separator (U+2028)

8233 PS Paragraph Separator (U+2029)

Chapter 3: Language Reference Changes 70

Native File Information R←{X}⎕NINFO Y

This function returns information about one or more files or directories.

Ymay be:

l a numeric scalar containing the tie number of a native file
l a character vector or scalar containing a file or directory name that conforms
to the naming rules of the host Operating System.

l a vector of character vectors and/or tie numbers

Variant Options
⎕NINFOmay be applied using the Variant operator with the options Wildcard (the
Principal option),Recurse and Follow.

Wildcard Option (Boolean)
0 the name or names in Y identifies a specific file name.

1

the name or names in Y that specify the base name and
extension (see File Name Parts on page 79), may also contain
the wildcard characters "?" and "*". An asterisk is a substitute
for any 0 or more characters in a file name or extension; a
question-mark is a substitute for any single character.

Recurse Option (Boolean)

0 the name(s) in Y are searched for only in the corresponding
specified directory

1
the name(s) in Y are searched for in the corresponding specified
directory as well as all sub-directories. IfWildcard is also 1,
the wild card search is performed recursively.

The optional left argument X is a simple numeric array containing values shown in
the following table.

Follow Option (Boolean)
0 the properties reported are those of the symbolic link itself

1 the properties reported for a symbolic link are those of the
target of the symbolic link

Chapter 3: Language Reference Changes 71

The optional left argument X is a simple numeric array containing values shown in
the following table.

X Property Default

0
Name of the file or directory, as a character vector. If Y is a tie
number then this is the name which the file was tied.

1

Type, as a numeric scalar:
0=Not known
1=Directory
2=Regular file
3=Character device
4=Symbolic link (only when Follow is 0)
5=Block device
6=FIFO (not Windows)
7=Socket (not Windows)

0

2 Size in bytes, as a numeric scalar 0

3 Last modification time, as a timestamp in ⎕TS format 7⍴0

4
Owner user id, as a character vector – on Windows a SID, on
other platforms a numeric userid converted to character format ''

5 Owner name, as a character vector ''

6

Whether the file or directory is hidden (1) or not (0), as a
numeric scalar. On Windows, file properties include a "hidden"
attribute; on non-Windows platforms a file or directory is
implicitly considered to be hidden if its name begins with a "."

¯1

7 Target of symbolic link (when Type is 4) ''

8 Current file position 0

9 Last access time in ⎕TS format, when available 7⍴0

10 Creation time in ⎕TS format, when available 7⍴0

11 Whether the file can (1) or cannot (0) be read (¯1 if unknown) ¯1

12
Whether the file can (1) or cannot (0) be written (¯1 if
unknown) ¯1

Chapter 3: Language Reference Changes 72

Note that the current file position identifies where ⎕NREAD will next read from or
⎕NAPPEND will next write to and is only pertinent when the corresponding value in
Y is a tie number rather than a name. It will be reported as 0 for named files.

Each value in X identifies a property of the file(s) or directory(ies) identified by Y
whose value is to be returned in the result R. If omitted, the default value of X is 0.
Values in Xmay be specified in any order and duplicates are allowed. A value in X
which is not defined in the table above will not generate an error but results in a ⍬
(Zilde) in the corresponding element of R.

R is the same shape as X and each element contains value(s) determined by the
property specified in the corresponding element in X. The depth of R depends upon
whether or not the Wildcard option is enabled. If, for any reason, the function is
unable to obtain a property value, (for example, if the file is in use exclusively by
another process) the default value shown in the last column is returned instead.

If theWildcard option is not enabled (the default) then Y specifies exactly one file or
directory and must exist. In this case each element in R is a single property value for
that file. If the name in Y does not exist, the function signals an error. On non-
Windows platforms "*" and "?" are treated as normal characters. On Windows an
error will be signalled since neither "*" nor "?" are valid characters for file or
directory names.

If theWildcard option is enabled, zero or more files and/or directories may match the
pattern in Y. In this case each element in R is a vector of property values for each of
the files. Note that no error will be signalled if no files match the pattern.

When using theWildcard option, matching of names is done case insensitively on
Windows and macOS, and case sensitively on other platforms. The names '.' and '..'
are excluded from any matches. The order in which the names match is not defined.

Examples
(0 1 2) ⎕NINFO 'c:/Users/Pete/Documents'

┌→───────────────────────────────────┐
│ ┌→──────────────────────┐ │
│ │c:/Users/Pete/Documents│ 1 163840 │
│ └───────────────────────┘ │
└∊───────────────────────────────────┘

⊃1⎕NPARTS '' ⍝ current working directory
c:/Users/Pete/

(⎕NINFO⍠1)'D*'
┌─────────────────────────────────────┐
│┌───────┬─────────┬─────────┬───────┐│
││Desktop│Documents│Downloads│Dropbox││
│└───────┴─────────┴─────────┴───────┘│
└─────────────────────────────────────┘

Chapter 3: Language Reference Changes 73

(⎕NINFO⍠1)'Documents/*.zip'
┌──────────────────────┐
│┌────────────────────┐│
││Documents/dyalog.zip││
│└────────────────────┘│
└──────────────────────┘

⍪ (0,⍳6) ⎕NINFO 'Documents/dyalog.zip'
┌──┐
│Documents/dyalog.zip │
├──┤
│2 │
├──┤
│3429284 │
├──┤
│2016 1 22 16 43 58 0 │
├──┤
│S-1-5-21-2756282986-1198856910-2233986399-1001│
├──┤
│HP/Pete │
├──┤
│0 │
└──┘

⊃1⎕NPARTS '' ⍝ current working directory
C:/Users/Pete/Documents/Dyalog APL-64 16.0 Unicode Files/

(⎕NINFO⍠1)'*.*'
┌──┐
│┌───────────┬──────────┬─────────┬───────────────────┐│
││default.dlf│def_uk.dse│jsonx.dws│UserCommand20.cache││
│└───────────┴──────────┴─────────┴───────────────────┘│
└──┘

⊢ ⎕MKDIR 'd1' 'd2'
1 1

'a'∘⎕NPUT¨'find' 'd1/find' 'd1/nofind' 'd2/find'
(⎕ninfo⍠'Recurse' 1)'find'

┌──────────────────────┐
│┌───────┬───────┬────┐│
││d1/find│d2/find│find││
│└───────┴───────┴────┘│
└──────────────────────┘

The following expression will return all Word document (.docx and .doc) in the
current directory, searching recursively through any sub-directories:

(⎕NINFO⍠('Recurse' 1)('Wildcard' 1))'*.docx' '*.doc'

Chapter 3: Language Reference Changes 74

Note
Of the file timestamps, only the last modification time should be considered reliable
and portable. Neither the access time or creation time are well supported across all
platforms.

Chapter 3: Language Reference Changes 75

Native File Move {R}←X ⎕NMOVE Y

This function moves native files and directories from one or more sources specified
by Y to a destination specified by X. ⎕NMOVE is similar to ⎕NCOPY (see Native File
Copy on page 57).

When possible ⎕NMOVE renames files and directories, which effects a fast move
when the source and destination are on the same file system. By default (see
RenameOnly option below), if ⎕NMOVE is unable to rename files or directories, it
instead copies them and deletes the originals.

X is a character vector that specifies the name of the destination.

Y is a character vector that specifies the name of the source, or a vector of character
vectors containing zero or more sources.

Sources and destinations may be full or relative (to the current working directory)
path names adhering to the operating system convention.

If Y specifies more than one source, Xmust be a character vector that specifies an
existent directory to which each of the sources in Y is to be moved.

The shy result R contains count(s) of top-level items moved. If Y is a single source
name, R is a scalar otherwise it is a vector of the same length as Y.

Variant Options
⎕NMOVEmay be applied using the Variant operator with the optionsWildcard (the
Principal option), IfExists and RenameOnly.

Wildcard Option (Boolean)
0 the name or names in Y identifies a specific file name.

1

the name or names in Y that specify the base name and
extension (see File Name Parts on page 79), may also contain
the wildcard characters "?" and "*". An asterisk is a substitute
for any 0 or more characters in a file name or extension; a
question-mark is a substitute for any single character.

Note that whenWildcard is 1, element(s) of R can be 0 or >1. IfWildcard is 0,
elements of R are always 1.

Chapter 3: Language Reference Changes 76

IfExists Option
The IfExists variant option determines what happens when a source file is to be
copied to a target file that already exists. It does not apply to directories, only to the
files within them.

Value Description

'Error'
Existing files will not be overwritten and an error will be
signalled. This is the default

'Skip'
Existing files will not be overwritten but the corresponding copy
operation will be skipped (ignored).

The following cases cause an error to be signalled regardless of the value of the
IfExists variant.

l If the source specifies a directory and the destination specifies an existing
file.

l If the source specifies a file and the same base name exists as a sub-directory
in the destination.

RenameOnly Option (Boolean)
The RenameOnly option determines what happens when it is not possible to rename
the source.

0 the source will be copied and the original deleted

1 the move will fail

Examples
A number of possibilities exist, illustrated by the following examples. In all cases, if
the source is a file, the file is moved. If the source is a directory, the directory and all
of its contents are moved.

Examples (single source, Wildcard is 0)
l The source name must be an existent file or directory.
l If the destination name does not exist but its path name does exist, the
source is moved to the destination name.

l If the destination name is an existing directory the source name is moved to
that directory.

Chapter 3: Language Reference Changes 77

⊃1 ⎕NPARTS ''
i:/Documents/Dyalog APL-64 17.0 Unicode Files/

⍝ Rename the Session file
⊢'session.dlf' ⎕NMOVE 'default.dlf'

1
⊢ ⎕MKDIR 'backups' ⍝ Make a backups directory

1
⍝ Move the Session file to backups directory

⊢'backups'⎕NMOVE'default.dlf'
1

↑⊃0 (⎕NINFO⍠1) 'backups*'
backups/default.dlf

Examples (single source, Wildcard is 1)
l The source name may include wildcard characters which matches a number
of existing files and/or directories. The destination name must be an existing
directory.

l The files and/or directories that match the pattern specified by the source
name are moved into the destination directory. If there are no matches, zero
copies are made.

⊃1 ⎕NPARTS ''
i:/Documents/Dyalog APL-64 17.0 Unicode Files/

⊢ ⎕MKDIR 'backups' ⍝ Make a backups directory
1
⍝ Move all files to backups directory

⊢'backups'(⎕NMOVE⍠'Wildcard' 1)'*.*'
3

↑⊃0 (⎕NINFO⍠1) 'backups*'
backups/default.dlf
backups/def_uk.dse
backups/UserCommand20.cache

Examples (multiple sources, Wildcard is 0)
l Each source name must specify a single file or directory which must exist.
The destination name must be an existing directory.

l Each of the files and/or directories specified by the source base names are
moved to the destination directory.

⊃1 ⎕NPARTS ''
i:/Documents/Dyalog APL-64 17.0 Unicode Files/

⊢ ⎕MKDIR 'backups' ⍝ Make a backups directory
1

Chapter 3: Language Reference Changes 78

⍝ Move 2 files to backups directory
⊢'backups'⎕NMOVE'default.dlf' 'def_uk.dse'

1 1
↑⊃0 (⎕NINFO⍠1) 'backups*'

backups/default.dlf
backups/def_uk.dse

Examples (multiple sources, Wildcard is 1)
l The destination name must be an existing directory.
l Each of the files and/or directories that match the patterns specified by the
source names (if any) are moved to the destination directory.

⊃1 ⎕NPARTS ''
i:/Documents/Dyalog APL-64 17.0 Unicode Files/

⊢ ⎕MKDIR 'backups' ⍝ Make a backups directory
1
⍝ Move files to backups directory

⊢'backups'(⎕NMOVE⍠1)'d*' 'UserCommand20.cache'
2 1

↑⊃0 (⎕NINFO⍠1) 'backups*'
backups/default.dlf
backups/def_uk.dse
backups/UserCommand20.cache

Note
When ⎕NMOVE copies and deletes files:

l The operation will take longer to complete.
l File modification times will be preserved but other attributes such as file
ownership may be changed.

l Read permissions will be needed on all files within a directory which is
moved.

l If the operation fails at any point and an error is signalled it is possible that
there may be files and/or directories left duplicated in both the source and
destination. It is not possible that a file or directory may be removed from
the source without having been copied to the destination.

Chapter 3: Language Reference Changes 79

File Name Parts R←{X} ⎕NPARTS Y

Splits a file or directory name into its constituent parts.

Y is a character vector or scalar containing a single name, or a vector of character
vectors containing zero or more names. Names must conform to the file-naming rules
of the host Operating System.

The file(s) need not exist; indeed this system function makes no attempt to identify or
locate it/them.

The optional left-argument X specifies whether or not the name or names specified by
Y are normalised before being processed. The default value 0 means no
normalisation; 1 means normalise as follows:

l Pathnames are made absolute.
l On Windows, all "\" directory separators are changed to "/".
l The resultant name is simplified by removing extraneous directory
separators etc. On Windows, this includes resolving occurrences of "." and
".." within the name. On non-Windows platforms single "." are removed.
Note that ".." and symbolic links interact differently on Windows to other
platforms; on other platforms they cannot be removed without reference to
the file system itself and are left in place.

If Y is a scalar or vector, the result R is a 3-element vector of character vectors as
follows:

[1] path

[2] base name

[3] extension

The path identifies the directory in which the file exists.

The base name is the name of the file stripped of its path and extension, if any.

The extension is the file extension including the leading ".".

If Y is a vector of character vectors, R is a vector of 3-element character vectors and is
the same length as Y.

Chapter 3: Language Reference Changes 80

Examples
⎕CMD 'CD'⍝ Current working directory

c:\Users\Pete

1 ⎕NPARTS 'α'
┌→─────────────────────────┐
│ ┌→─────────────┐ ┌→┐ ┌⊖┐ │
│ │c:/Users/Pete/│ │α│ │ │ │
│ └──────────────┘ └─┘ └─┘ │
└∊─────────────────────────┘

1 ⎕NPARTS '\Users\Pete\Documents\dyalog.zip'
┌→───┐
│ ┌→───────────────────────┐ ┌→─────┐ ┌→───┐ │
│ │C:/Users/Pete/Documents/│ │dyalog│ │.zip│ │
│ └────────────────────────┘ └──────┘ └────┘ │
└∊───┘

⊃'.'⎕wg'APLVersion'
AIX-64

1 ⎕nparts'/home/andys/./..'
┌────────────┬──┬┐
│/home/andys/│..││
└────────────┴──┴┘

1 ⎕NPARTS '.' '..'
┌────────────────┬───────┐
│┌───┬─────────┬┐│┌───┬┬┐│
││i:/│Documents││││i:/││││
│└───┴─────────┴┘│└───┴┴┘│
└────────────────┴───────┘

Note that ⊃1 ⎕NPARTS '' returns the current working directory.

⊃1 ⎕NPARTS ''
┌→─────────────┐
│c:/Users/Pete/│
└──────────────┘

Chapter 3: Language Reference Changes 81

Write Text File {R}←X ⎕NPUT Y

This function writes character data to a text file. See also Read Text File on page 67.

Y is either a simple character vector or scalar containing the name of the file to be
written, or a 2-item vector whose first item is the file name and whose second is an
integer scalar specifying flags for the operation.

If flags is 0 (the default value if omitted) the file will not be overwritten if it
already exists and ⎕NPUT will signal an error. If flags is 1 the file will be
overwritten. If flags is 2 the file will be appended to; i.e.

flags file does not exist file exists

0 data is written to new file error signalled, file is unchanged

1 data is written to new file file is overwritten

2 data is written to new file data is appended to file

The left-argument X is comprised of 1, 2 or 3 items which identify (content)
(encoding) (newline) respectively.

content is either a vector of character vectors, each of which represents a line in the
file to be written, or a simple character vector.

If specified, encoding is either:

l a character vector from the first column in the table File Encodings on page
67. If encoding specifies a UTF format, it may be qualified with -BOM
(e.g. UTF-8-BOM), which causes a Byte Order Mark (BOM) to be written at
the beginning of the file or -NOBOM which does not. If the -BOM or -
NOBOM suffix is omitted, UTF-8 defaults to UTF-8-NOBOM, while the
other UTF formats default to -BOM.

l a 256-element numeric vector that maps each possible byte value (0-255) to
a Unicode code point (1st element = Unicode code point corresponding to
byte value 0, and so on). ¯1 indicates that the corresponding byte value is
not mapped to any character. Apart from ¯1, no value may appear in the
table more than once.

If omitted, encoding defaults to UTF-8-NOBOM.

Chapter 3: Language Reference Changes 82

Note: If a non-empty file is appended to:

l No BOM will be written, even if encoding specifies it.
l No check is made that the existing file content is text in the same encoding
format.

If specified, newline is numeric and is either ⍬ or a scalar or vector from the column
labelled Value in the newline characters section of the table Line separators: on
page 69. Any other value causes DOMAIN ERROR. If newline is omitted it defaults
to (13 10) on Windows and 10 on other platforms.

If content is nested, each element is considered to be to a logical line in the file,
and when the file is written, a line separator character corresponding to newline is
appended to each and every element, i.e. the data written to the file (excluding the
BOM) is:

∊content,¨⊂⎕UCS newline

If content is simple each and every LF (⎕UCS 10) character that it contains is first
replaced by the character corresponding to newline. If not present, one
LF character is added to the end of the array prior to these replacements.

In both cases, any other line separator characters are written as is to the file. This
allows the APL programmer to insert other line endings if so desired.

If content contains anything other than a character vector or scalar (or these, nested)
then a DOMAIN ERROR is signalled.

The shy result R is the number of bytes written to the file.

Note that when content is a vector of character vectors and encoding is omitted;
it is necessary to enclose the left argument.

Example:
txt←'mene' 'mene' 'tekel' 'upharsin'
⎕←(⊂txt) ⎕NPUT 'writing.txt'

25
⊢(⊂'adding' '3' 'lines')⎕NPUT'writing.txt' 2

18

Chapter 4: I-Beam Reference Changes 83

Chapter 4:

I-Beam Reference Changes

I-beam Changes
I-beam functionality changed fromVersion 16.0.

A Description Change

201 Syntax Colour Tokens New function

739 Temporary Directory New function

5177 List Loaded File Objects Now reports file check sum and last
modification time

5178
Remove Loaded File
Object Info New function

5179 Loaded File Object Info New function

7159 JSON Import Removed (replaced by ⎕JSON)

7160 JSON Export Removed (replaced by ⎕JSON)

7161 JSON TrueFalse Removed (replaced by ⎕JSON)

Chapter 4: I-Beam Reference Changes 84

Syntax Colour Tokens R←201⌶Y

This function provides a description of the syntax colour tokens reported by 200⌶.
See Syntax Colouring on page 1.

Y is ⍬ (zilde).

R is a 3-column matrix that describes the syntax colouring tokens as follows:

R[;1] Token type

R[;2] Token Value

R[;3] Internal description

Example
⍴201⌶⍬

207 3
3 3↑201⌶⍬

┌────────────┬─┬────────────┐
│Global token│0│MINI_NULL │
├────────────┼─┼────────────┤
│Global token│1│MINI_COMMENT│
├────────────┼─┼────────────┤
│Global token│2│MINI_UCC │
└────────────┴─┴────────────┘

Chapter 4: I-Beam Reference Changes 85

Temporary Directory R←739⌶Y

Returns the name of a system temporary directory suitable for user files, as a character
vector. The name reported does not include a trailing directory separator

Y is 0.

The result R is a character vector.

Example (Windows)
739⌶0

C:/Users/Pete/AppData/Local/Temp

Example (non-Windows)
739⌶0

/tmp

Remove Loaded File Object Info R←5178⌶Y

The editor may be used to edit Dyalog script files (.dyalog files) and general text files
and to save the contents in the workspace. Additionally ⎕FIX can be used to fix
scripts held in files. This I-Beam removes the information held about an object in the
workspace specified by Y that is associated with such a file.

Y is a character vector that specifies the name of a workspace object or a ref to an
object.

R is Boolean. 1 means that the information was removed; 0 that it wasn't.

Note that the workspace object itself remains in the workspace; just the information
about its associated file is removed.

Examples:
dyalog←2 ⎕NQ '.' 'GetEnvironment' 'DYALOG'
aedit←'/SALT/spice/aedit.dyalog'
⊢⎕FIX 'file://',dyalog,aedit

#.arrayeditor
5178⌶'arrayeditor'

1
5178⌶'xyz' ⍝ unused name

0

Chapter 4: I-Beam Reference Changes 86

Loaded File Object Info R←5179⌶Y

The editor may be used to edit Dyalog script files (.dyalog files) and general text files
and to save the contents in the workspace. Additionally ⎕FIX can be used to fix
scripts held in files. This I-Beam returns details about an object in the workspace
specified by Y that is associated with such a file.

Y is a character vector that specifies the name of a workspace object or a ref to an
object.

R is an 8-element vector containing the following information pertaining to the
object and

Element Contains

1 Object name or ref (Y)

2 Parent namespace

3 Name class (see ⎕NC)

4 File name

5 Start line (first line in file, 0 origin, of the object)

6 Line count (number of lines in file occupied by the object)

7 File Checksum

8 File modification time (⎕TS format)

If an object occupies a file in its entirety, both Start line and Line count are 0.

Examples:
dyalog←2 ⎕NQ '.' 'GetEnvironment' 'DYALOG'
aedit←'/SALT/spice/aedit.dyalog'
⊢⎕FIX 'file://',dyalog,aedit

#.arrayeditor
1 1 1 0 1 1 1 1/ 5179⌶'arrayeditor'

┌─────────────┬─┬─┬─┬─┬────────┬───────────────────┐
│#.arrayeditor│#│9│0│0│008fe4ed│2018 5 11 8 56 10 0│
└─────────────┴─┴─┴─┴─┴────────┴───────────────────┘

1 1 1 0 1 1 1 1/ 5179⌶'arrayeditor.List'
┌────┬─────────────┬─┬──┬─┬────────┬───────────────────┐
│List│#.arrayeditor│3│22│5│008fe4ed│2018 5 11 8 56 10 0│
└────┴─────────────┴─┴──┴─┴────────┴───────────────────┘

5179⌶'xyz' ⍝ unused name
┌┬──────┬─┬┬─┬─┬────────┬────────────────┐
││[Null]│0││0│0│00000000│1970 1 1 0 0 0 0│
└┴──────┴─┴┴─┴─┴────────┴────────────────┘

Chapter 5: Object Reference Changes 87

Chapter 5:

Object Reference Changes

Chapter 5: Object Reference Changes 88

CellMove Event 151

Applies To: Grid

Description

If enabled, this event is reported when the user attempts to position the cursor over a
cell in a Grid by clicking the left mouse button or by pressing a cursor movement
key. The purpose of this event is to allow an application to perform some action prior
to the user entering a cell, to inhibit entry to a cell, or to deny exit from the current
cell.

The default action is to position the user on the new cell. This action can be
prevented by returning a 0 from the callback function attached to the event.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is an 8 element vector as follows :

[1] Object ref or character vector

[2] Event 'CellMove' or 151

[3] New cell row integer

[4] New cell column integer

[5] Scroll flag 0 or 1

[6] Selection flag 0, 1 or 2

[7] Mouse flag 0 or 1

[8] Changed flag 0 or 1 (relates to current cell)

[9] New value new value of current cell or ⍬

The 5th element of the event message is 1 if switching to the new cell would cause
the Grid to scroll.

The 6th element of the event message is 1 if the user is moving to the new cell by
extending the selection. It is 2 if the user selects an entire row or column (by clicking
on a title), which moves the current cell to the first one in the selection.

The 7th element of the event message is 1 if the mouse is used to switch to a new cell.

Chapter 5: Object Reference Changes 89

The 8th element of the event message is 1 if the user is attempting to move to the new
cell from another cell in the Grid having typed in (as if to alter) the current cell.

The 9th element of the event message is the intended new value in the current cell or
⍬ (zilde) ifChanged flag is 0.

The CellMove event may be used to validate and refuse changes as the user navigates
between cells.

An application can position the user on a particular cell in a Grid by calling
CellMove as a method. If so, the argument need contain only the New cell row and
New cell column parameters.

Chapter 5: Object Reference Changes 90

Chapter 6: Non-Windows Specific Features 91

Chapter 6:

Non-Windows Specific Features

Summary
This section summarises the changes specific to Dyalog APL Version 17.0 on non-
Windows platforms. This list currently consists of:

l AIX
l Linux (including the Raspberry Pi)
l macOS/ Mac OS X

Hardware Requirements
AIX
For AIX, Version 17.0 requires AIX 7.2 or higher, and a POWER7 chip or higher.

Raspberry Pi
On the Raspberry Pi, Dyalog 32-bit Unicode supports Raspbian Jessie or later.

Non-Pi Linux
For non-Pi Linux, Version 17.0 only exists as 64-bit interpreters - there are no 32-bit
versions. It is built on Debian 7, and QAed on RedHat 6; it runs on all recent
distributions, including Ubuntu 14.04 and openSUSE Leap 42.3. Contact Dyalog for
information about other distributions.

macOS/Mac OS X
Version 17.0 requires Mac OSX Yosemite or El Capitan or macOS Sierra or later.
The target Mac must have been introduced in 2010 or later.

Chapter 6: Non-Windows Specific Features 92

RIDE and Dyalog APL 17.0
Dyalog Version 17.0 supports RIDE 3 and RIDE 4 only; RIDE 2 is not supported.
Dyalog recommends that RIDE 4 is used in preference to RIDE 3. RIDE 4 can be
used with Version 15.0 too.

RIDE 4 is supported on Raspberry Pi models 2 and 3 only; models Zero and 1 are not
supported (the underlying libraries which RIDE is built on are not available for the
Pi Zero and 1). The Dyalog RIDE Reference Guide details how to configure the
APL session to support the underscored alphabet; contact support@dyalog.com if
you wish to be able to generate key-chords which result in the underscored alphabet
being entered into APL.

Note that on Linux and Pi, if RIDE 4 is installed after Dyalog 16.0 an extra icon will
be added to the window manager's start menu which will start Dyalog with a
RIDE front end.

Location of configuration and log files
In Dyalog 17.0 the location of various configuration and log files has been changed
so that they are all put in one directory. See the UNIX Installation and Configuration
Guide for more information.

SQAPL on macOS
Dyalog 17.0 for macOS includes support for SQAPL. However, it is necessary to
install iODBC and suitable drivers for your database before SQAPL can work. The
SQL Interface Guide describes the steps that are typically necessary to get
SQAPL connected to a MySQL database.

4000⌶ and 4002⌶
4000⌶ (Fork process) and 4002⌶ (Reap processes) have been withdrawn on all
platforms except AIX. This is due to limitations imposed by the HTMLRenderer,
and due to problems in the interaction of forking processes and using RIDE.

Index 93

Index

B

backtick keyboard 26
base name 79
BOM 68, 81
Bug Fixes 24
byte order mark 68, 81

C

capsule 31
CellMove 88
Classic Edition 37
comma separated values 41
command-line options 17, 25
coying native files 57
creating native files 62
current working directory 80

D

Decimal option 44, 51
DoubleQuote option 41, 44-45, 51-52
dyadic primitive functions

unique 40
dyadic primitive operators

variant 44, 51, 57, 62, 64, 66, 70, 75

E

editor
toolbar 30

EscapeChar option 41, 44-45, 51-52
Events

CellMove 88
extension 79

F

file access error 65
files

operating system native files 57, 62, 75
Fill option 44
Find Objects Tool 27
Follow option 70

G

global trigger 15
grade-down function

monadic 35
grade-up function

monadic 37

I

i-beam
syntax colour tokens 84

IfExists option 51, 58, 62, 76
Interoperability 19
Invert option 44-45

K

Key Features 1
key operator 22

L

LineEnding option 51
local names 13
localisation 13
locals lines 13

M

major cell 40
Miscellaneous Enhancements 25
monadic primitive functions

grade down 35
grade up 37

moving native files 75

Index 94

N

native file
copy 57
create 62
delete 64
information 70
move 75
name parts 79
read 66
read text 67
write text 81

ndelete 64
nest 22
nexists 66
nget 67
ninfo 70
nparts 79
nput 81

P

path 79
PreserveAttributes option 58
Principal option 44, 51, 57, 62, 64, 66, 70, 75

Q

QuoteChar option 41, 44-45, 51-52

R

Ragged option 44
rank operator 22
read text file 67
Records option 44
Recurse option 70
RenameOnly option 76

S

Separator option 44, 51-52
session toolbar

session tools 30
shy results 34

stencil operator 22
symbolic link 64, 66, 70-71
syntax colour tokens 84
System Requirements 18

T

Thousands option 44, 51
triggers

global 15
Trim option 44, 51

U

Unicode Edition 37
Unique option 62
unique set function 40

V

variant operator 22, 44, 51, 57, 62, 64, 66, 70,
75

W

where 22
Widths option 44, 51
Wildcard option 57, 64, 66, 70, 75
write text file 81

